October 4, 2022

Westbury Water District PWS ID No. NY2902856 MCL Deferral for 1,4-Dioxane, PFOA, and PFOS Quarterly Report – Third Quarter 2022

Introduction

On behalf of the Westbury Water District (WWD or District), D&B Engineers and Architects (D&B) has prepared this document in accordance with the requirements of the New York State Department of Health (NYSDOH) for public water suppliers who have been granted deferrals from Maximum Contaminant Level (MCL) violations for 1,4-Dioxane, Perfluorooctanoic Acid (PFOA), and/or Perfluorooctanesulfonic Acid (PFOS). The District was granted an MCL deferral for 1,4-Dioxane, PFOA, and PFOS in 2020. The WWD was granted a deferral because it has been proactive in its efforts to establish and implement an action plan for managing the above-referenced compounds.

The last three years have been a time of unprecedented disruption in the supply chain of chemical supplies, equipment, infrastructure components, pipe and materials (e.g., steel), and treatment systems. Contractors and water suppliers, locally and nationwide, have been impacted by these issues in completing both small-scale and large-scale projects. Shortages of necessary items have significantly impacted the District, primarily in terms of price increases, decreased availability, and longer lead times. In addition, due to the rapidly changing regulatory environment through an expanded list of contaminants with lower regulatory advisory levels or MCLs, local and state regulators are experiencing a large number of capital project submissions, in addition to their regular workload. This increased workload has led to longer regulatory review times of engineering reports, detailed design plans, and specifications. In many cases, these factors, which are out of the District's control, have caused delays in obtaining final regulatory approval, commencing construction, procuring equipment and necessary components, and conforming to proposed construction schedules.

The District has done everything within its power to adhere to the project schedules approved in the original deferral request, as described in the previous quarterly deferral reports. The full impact of supply chain issues and delays was not known at the time of the original compliance deferrals and due to these regulatory changes, these delays were expected to become worse before improving because of increased national demand. Recognizing these exceptional circumstances, the District requested and received a 12-month deferral renewal with a MCL compliance deadline of August 25, 2023.

The District's goal, as always, is to provide an adequate supply of potable water to its consumers and it has done everything in its ability to move forward on the treatment projects to further that goal and meet consumer demands. These impacts of the last three years are expected to continue for the foreseeable future and will most likely affect the ability of the District to conform to the project schedules outlined in the original deferral request, even with the deferral renewal. As such, anticipating the on-going conditions

of supply chain issues and regulatory delays, additional time consideration past the deferral renewal deadline will most likely be needed to bring the projects to a substantially completed status.

The enclosed is a report describing the WWD's progress towards maintaining the highest quality of water for District customers and meeting the deadlines set forth in the deferral approval. Updated schedules for each project are contained in **Attachment A**.

Corrective Action Plan Milestones

Drexel Avenue Station – Wells 6 and 7A

The Drexel Ave Station (Wells 6 and 7A) Advanced Oxidation Process (AOP) project has received regulatory approval from both the Nassau County Department of Health (NCDH) and NYSDOH. Regulatory review began with the submission of the engineering report to the NCDH and NYSDOH for review in the first quarter of 2021. Detailed design documents for the facility were submitted to the NCDH and NYSDOH for review in the third quarter of 2021. The engineering report and detailed design documents were approved by the NCDH and NYSDOH in the third quarter of 2022. It should be noted that the overall regulatory review and approval process took longer than initially anticipated. The three project contracts (General, Electrical, and Plumbing) were bid in the second quarter of 2022 and awarded in the third quarter of 2022. The District anticipates commencement of construction in the fourth quarter of 2022.

Although it has been granted a deferral, the WWD was able to minimize the usage of these wells.

State Street Station - Well 12

The State Street (Well 12) PFOA and PFOS treatment project is currently under regulatory review. Regulatory review began with the submission of the engineering report to the NCDH and NYSDOH for review in the first quarter of 2021. Detailed design documents for the facility were submitted to the NCDH and NYSDOH for review in the third quarter of 2021. A substantial change has been made to the scope of work to mitigate the visual impacts of the project, which has delayed the construction of this treatment system. In anticipation of the imminent NCDH and NYSDOH approvals, the District has begun soliciting bids to construct the treatment system.

Although it has been granted a deferral, the District was able to avoid usage of this well.

Wells 10 and 14 Station

The Wells 10 and 14 AOP project is currently under regulatory review. The project engineering report was submitted to the NCDH and NYSDOH in the third quarter of 2021. Approval of the engineering report was received from the NCDH and NYSDOH in the fourth quarter of 2021. The detailed design documents were submitted to the NCDH and NYSDOH in the third quarter of 2022 and the District is awaiting approval from both regulatory agencies. Obtaining regulatory approval is taking longer than

initially anticipated. Therefore, the project construction will be postponed until approvals are received to construct treatment.

Although it has been granted a deferral, the WWD was able to minimize the usage of these wells. It should be noted that only one of the two wells (Well 14) has exceeded the MCL for 1,4-dioxane.

Public Notification

In accordance with the terms of the deferral, the WWD has maintained an open line of communication with the public regarding its deferral. The deferral public notification documentation is still featured prominently on the District website, as are previous quarterly reports.

Analytical Sampling

Relevant sample results for the wells for which deferrals were granted (Wells 6, 7A, 10, 12, and 14) taken during the third quarter of 2022 are contained in the below tables. Full laboratory reports for each sample are contained in **Attachment B**.

1,4-Dioxane (parts per billion, ppb)

Well		Date	
vv en	July 2022	August 2022	September 2022
Well 6 (N-00101)	0.66	0.66	0.81
Well 7A (N-07785)	0.85	0.78	0.98
Wells 6 & 7A Air Stripper	NS	0.76	NS
Well 10 (N-05007)	0.61	0.61	0.65
Well 14 (N-07353)	1.6	1.7	1.7
Wells 10 & 14 Blended	NS	1.1	NS

NS – Not Sampled

PFOA (parts per trillion, ppt)

Wall	Date
Well	August 2022
Well 12 (N-05655)	15.3

PFOS (parts per trillion, ppt)

Well	Date
wen	August 2022
Well 12 (N-05655)	15.4

Conclusion

As demonstrated above, the Westbury Water District is actively working to preserve the quality of water for its customers and comply with the requirements put forth by the NYSDOH. The District looks forward to continuing to work towards completion of its treatment facilities.

Should you have any questions, please contact the District at 516-333-0427 or visit the website, www.westburywaterdistrict.com.

Very truly yours,

Board of Commissioners Westbury Water District

Enclosures

cc: K. Wheeler (NYSDOH)

B. Rogers (NYSDOH)

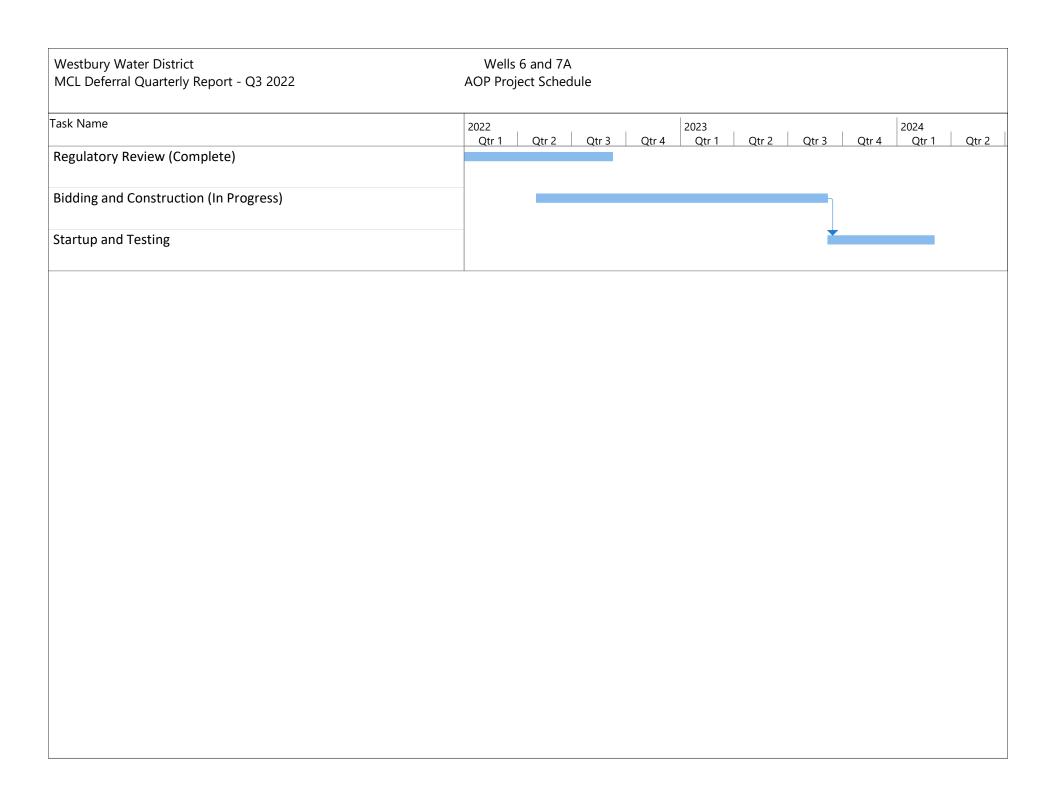
W. Provoncha (NCDH)

P. Young (NCDH)

R. Putnam (NCDH)

J. Ingram (WWD)

B. Merklin (D&B)


P. Sachs (D&B)

L. Ortiz (D&B)

P. Connell (D&B)

ATTACHMENT A

Project Schedules Associated with MCL Deferral

Westbury Water District MCL Deferral Quarterly Report - Q3 2022	Well 12 GAC Project Schedule
ask Name	2022 2023 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4
Regulatory Review (In Progress)	Qui qui qui qui qui qui
Bidding and Construction (In Progress)	
Startup and Testing	

Westbury Water District Wells 10 and 14 MCL Deferral Quarterly Report - Q3 2022 AOP Project Schedule Task Name

 2022
 2023
 2024

 Qtr 1
 Qtr 2
 Qtr 3
 Qtr 1
 Qtr 2
 Qtr 3
 Qtr 4
 Qtr 1
 Qtr 2
 Qtr 3
 Qtr 4
 Qtr 1
 Qtr 2
 Qtr 3
 Qtr 4

 Regulatory Review (In Progress) **Bidding and Construction** Startup and Testing

ATTACHMENT B

Water Quality Data

160 Drexel Ave.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-00101

Lab No.: 70220733001

Sample Information: Type: Drinking Water Origin: Raw Well

Routine

www.pacelabs.com

Westbury Water & Fire Dist.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Collected: 07/05/2022 07:20 AM Point N-00101 07/05/2022 10:35 AM Received: Location Well 6

Collected By CLIENT

Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Date:	07/18/2022 1:34 PM	
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.66		1	ug/L	1	07/19/2022 9:07 AM	001 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	88%		1	%REC		07/19/2022 9:07 AM	001 AG2R1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

Test results meet the requirements of NELAC unless otherwise noted.

160 Drexel Ave.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-07785

Lab No.: 70220733002

Sample Information: Type: Drinking Water Origin: Raw Well Routine

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Collected: 07/05/2022 07:30 AM Point N-07785 Received: 07/05/2022 10:35 AM Location Well 7A

Collected By CLIENT

Analytical Method: EPA 522]	Prep Method:	EPA 522		Prep Date:	07/18/2022 1:34 PM	
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.85		1	ug/L	1	07/19/2022 9:24 AM	002 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	79%		1	%REC		07/19/2022 9:24 AM	002 AG2R1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

Test results meet the requirements of NELAC unless otherwise noted.

Pace

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Sample Information:
Type: Drinking Water
Origin: Raw Well
Routine

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856 Lab No. : 70220733003 Client Sample ID.: N-05007

07/05/2022 09:20 AM Point N-05007 07/05/2022 10:35 AM Location Well 10

Collected By CLIENT

Collected:

Received:

Analytical Method: EPA 522	ļ	Prep Method:	EPA 522		Prep Date:	07/18/2022 1:34 PM	
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.61		1	ug/L	1	07/19/2022 9:41 AM	003 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	91%		1	%REC		07/19/2022 9:41 AM	003 AG2R1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

Jennifer Aracri

Test results meet the requirements of NELAC unless otherwise noted.

Pace

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Sample Information:
Type: Drinking Water
Origin: Raw Well
Routine

575 Broad Hollow Road, Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436

www.pacelabs.com

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856 Lab No. : 70220733005 Client Sample ID.: N-07353

Collected: 07/05/2022 09:30 AM Point N-07353
Received: 07/05/2022 10:35 AM Location Well 14

Collected By CLIENT

Analytical Method: EPA 522	ļ	Prep Method:	EPA 522		Prep Date:	07/18/2022 1:34 PM	
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	1.6*		1	ug/L	1	07/19/2022 10:16	005 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	88%		1	%REC		07/19/2022 10:16	005 AG2R1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

Jennifer Aracri

Test results meet the requirements of NELAC unless otherwise noted.

WorkOrder:

70220733

Laboratory Certifications

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Date Reported: 07/19/2022 page 7 of 10

(631) 694-3040 Fax: (631) 420-8436

Client Info: Name or Code: Westbuy Water Dist
Name or Code: Westbuy Duter Dist
Address:
Phone #:
Attn:
Proj. # or (Name):
Bill To:
Copies To:

Sample Request Form PUBLIC WATER SUPPLIER

AQ - Aqueous

- Soil

Sample Types	Durnoso	Origin	Treetment Types	
Cooler Temp:/. 4	<u>°C</u> (w)		'ES 🗆 NO VOC'S PRESERVED WI	тн нс
Accepted By:	ed , 7/5/21	10:35 Au		
Collected By: M. Kacı			WELL RUN TO SYSTEM	
Date: 7-5		-		
., 022,0 ,,,,,,		\	WELL OFF LINE	

Sample Types **Purpose** <u>Origin</u> D - Distribution PW - Potable Water RO - Routine RE - Resample RW - Raw Well GW - Groundwater S - Special TW - Treated Well SW - Surface Water WW - Waste Water

T - Tank MW - Monitoring Well

- Influent E - Effluent

Treatment Types

AST - Air Stripper

GAC - Granular Activated Charcoal

- Nitrate Removal Plant FE - Iron Removal Plant

- Other

Cample Infor

Date/Time S Collected:	Sample Type	Location	Origin	Treatment Type	Purpose	Field Readin Cl ₂ pH	ngs H/Temp	Analysis	Lab No.
73000	SW	We11-6 N-00101	ı2ω		120			1.4 Dioxane,	
to the second se	6W	N-00101 Well-7L N-07785	RW		120				
10/090	SW	we11-16	RW		20	7.			
15/2 80S	60	Well-11 N-05654	RW		RO				
15/22m6	5W	WeII-14 M-07353	RW		RO				
15/2 805 0 15/2 m 6	6W	Well-14 M-07353 Well-16 N-08497	1200		120				
		and the second							
narks:									

		CO	C PAG	£	٥١	-				Sample Container Count															h);	ŧ		7"	C		2	2	U	1		3.	<u> </u>	_	1	_																									
											_																		2								1												 :	_	-	17				Dı	ue)at	te	: (7	/14	/2	22		
			CI	ent _				U	K	1	1	<u>) </u>								Pr	ofile #			-	50	0	6	2	1					_		V	1	Use	Point	Numi	iber S	Sprei	adshe	eţ								W	MI))													
			Ci		1	4	.,	0	70	эх	•				2/	6	_																				Add	1 SCI	LOGF	D to	first	sem)	ple lor	Field	d Cha	rge																					
r	_		Work	CID:	1	-	- 4	7	-	7/1				7	1	_		-	=	_	Notes	_	1	T	7		_	_	_	_	T	_	T	=		_	1	Т	_				_	_	-	-	-				Т	T	Т			Г	Т	Т			1	Т	Т	H	T	T	-
COC	*	VGBU	7G9C	vG9H	VG9S	1691	2000	1 9	ASS/	CGGT	SeSo	NG4U	AG3U		070	AG10	AG34	AG3S	AG4E	4G3T	AG2R	AG1T	AG1H	9.5	2 3	פופי	BP4U	врзи	BP2U	BP1U	BP3S		BPZS	BP4N	BP3N	BP2N	врзс	Trda	2 2	BP35	BP3R	BP1Z	BP1N	0000		- CPS		WG2U	WGFU	WGKU	WGDU		ZPLC	N C)	ΜP	မ		SOC									
Matro	75	Š	3	3	3 1	5 1	3 6	5 8	<u> </u>	ă	ă	3	1	+	-	¥.	¥.	Ä	Ą	¥	2	-	Ā	-	-	2	00	<u>m</u>	m	100	-	+	m	<u>m</u>	0	8	8	4	0 5	Ω	œ.	<u></u>	1-	- 0	9 1	2	~	>	>	>	>	T	7	0		Ť	T	7					1			T	_
- 29	-		-	+	+	+	+	t	-		=			1	+	7					2	_		T	T	1				1	Ť	T	T	7		П		T	T				İ		1																		Т				
2			7	7	T	+	\dagger	T							1			-			2	_		1	1	1				Т	1		7					T		T																											4
4			7	_	\forall	+		t	1						7		=				2	-		T	1	1				T		1	1																																		
5			7		T	7	1	t		T		\vdash			T						2		T	T	T					Г																																					
6						1	T	T	T		T		T								2	_		T													i:																												İ		_
	Т					T	T	T																																																				_			1			L	
21	Г						T	1				Г																																											L							\perp				_	_
-	Г																																						1																	L					_		_			1	_
10		1																																			L													_					L			_		1		-	-		-	-	-
11																																						1	_			_	-		1					_	1	4	_			-	-	_		-	+	+	+	-	+	+	_
12																																											1			_,			L	_			1		1					L	1_	L	1	1			_
page 9	er Cod	es				-	-	-		-				_	_		-					-	-											_		l			_			oc			_	7				_			Mat	trix													
ge (VG	911	40ml	unc	res cl	earv	_	Glas	ss AG41	u I	125	imL	ומחט	res a	mbe	er ala	ass	BP4	IU	125		unpre	_	ed	olasti	С	Misc. SP5T 120mL Coliform Na Thio										BP	1U	1	IL ur			ved p	olast	ic				WT																		
of	VG	9C	40ml	L Asc	arbic-	HCI (vial A	4G3I	U	250	mL	นกอเ	res a	mbe	er ala	ass	BP:	SU_			unpre					R	211			ore K		d la			BP3N* 250mL HNO3 plastic BP3C 250mL Sodium Hydroxide											7		SL	L	Solid Non-aqueous Liquid						-										
of 10	VG VG		40ml		clear fuirc c		rial		4G21	_	_			res a				BP		1L	unpr	esen	ed p	last	ic		WG	FU	40	z Ur	pres	erve	d Ja	c				32U	_		_	_	es ar						OL WF		0	IL /ipe															
	DG		40m		Thios				4G3					CI 2				BP:				HNO ONH					WG				nores Inpre			_			E												DW		_	rinki	ng V	Nale	er	117.											
	DG	9P	40m	L am	oer vi	at - T	SP.		AG4	Ε	125	SmL	EDA	A am	per	glas	s	BP:		500)mL	нио	3 pla	ısılc			ZPL TEC	_	_		Bag	_			-		• C	an a	iso be	e a BF	P4N																										
	DG				Maleid 0mL \		40m		4G3 4G2					Thio 500m								H2S(BG:				L Cle		Slass																																		
	DG		-		m CI/0 s Jar i				AG1		-			fate i				BP:		_		50m Trizn		ttle		-	GN WP		Ge	ner:	al		_	-							s	SOC																									
	CG	10	IL C	mpre	S Jai	COII	Eu)	_	AG1	_	-	H4CI		Jer g	1023			BP	35	250	0mL	Amm	oniu	_		le				-						#:		39T	_		L Na	a Th	nio an			, x-	2																				
		390 340					-	-										BP BP		_		NH4	_															39A 39Y	_				bic a			пL	2																				
	Ë		102		30.11													BP BP	_)3 pla			r Bo	Hla												36T 33U					ale 60 es ar				1																				
																		UF	10	1140	11110	Jone	10 /1	11100	50		1										AC	33T		Na T	hìos	sulfa	ate 2	50m	L bo	ttle																					
																																						91B 31T	_				ate A	-	_	_	2																	L			
																																					AC	31A		(NH4	4CL))		_	_		2	J																			
Addin	not C	ommer	118	_		_		-		_	_	_	_	_	_		-	_	_	_	_	-		_		_	-	_		_	_	_			-0		_	_	-	_	_			_	-	-		_	_	-			_	-	-		_	_		-	-		-	+			
	_		_				_			_	_									_	_	_		_			_	_	_	_	_	_		_	_			_		_	_	_	_	_	- 110-1		_	-	_		-	-	-	-	-	-	_			-	-		_	+		_	

<i>S</i>	Sa	ample	Conditio	on Upor	Receirt	1104	""	20722
/ Pace Analytical "	011				6 1	MU#	104	20733
/ door mary trous	Client N	ame			Project ;	PM: JSA		Due Date: 07/14/22
Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client	Framm	VV P L	Pace Dthe			CLIENT: W		
Tracking #:		erciai L	racenue	3 1				
Custody Seal on Cooler/Box Present:Ye	e No	Soals i	ntact. 🗀 Vo		₹/∧	Tomporaturo	Dlank Ur	esent: Liyes Li Nu
Packing Material: Bubble Wrap Bubble	Bans	Jeais i Zinlac -r	illact. ☐ le	S∐ NU □ I	N/ A	Type of Ice:		
Thermometer Used: THOST 148	Correcti	ion Facto	r: <u>+, </u>	7				process has begun
Cooler Temperature(°C):	Conler T	emnerat	ure Correct	edi°C)- 1	.b [_]	J .		placed in freezer
Temp should be above freezing to 6.0°C		omporat	.0.0000000	04(0). (_ Date/ Hille De	JOJA KILO	piaced in treezer
USDA Regulated Soil W/A, water sample	1			Date and	Initials of ne	rson examininç	content	S. AS 7/5/22
Did samples originate in a quarantine zone wi		nitad Stat	oc. AL AD CA					om a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		riiteu Stat S 🗀No	es: AL, AK, CA	i, FL, GA, IU, L	A, M3, NC,			erto Rico)? Yes 🔯 No
If Yes to either question, fill out a Regulate			: TT-C-010) a	nd include s	with collogo			erto Ricoj? — rest x a ivo
Tes to either question, fill out a Regulate	50 300 GH	ecklist (i	-11-0-0101 8	The include	WITH SCORPCE	СОММЕ		
Chain of Custody Present:	es	□No		1	v	001-11-12	1110.	
Chain of Custody Filled Out:	€Yes	□No		2.				-
Chain of Custody Relinquished:	©Yes	□No	*	3.				*
Sampler Name & Signature on COC:	₩es	□No	□N/A	4.			8 2	
Samples Arrived within Hold Time:	∀ es	□No	7	5.				
Short Hold Time Analysis (<72hr):	□Yes	MNg		6.				
Rush Turn Around Time Requested:	□Yes	<u>Ľ</u> No		7.				
Sufficient Volume: (Triple volume provided for	1 Yes	□No		8.				
Correct Containers Used:	ĽYes	□No		9,				
-Pace Containers Used:	⊏Yes	□No						
Containers Intact:	₫Yes	□No		10.		90		
Filtered volume received for Dissolved tests	□Yes	₩No	□N/A	11.	Note if sedin	nent is visible in	the disso	lved container.
Sample Labels match COC:	Yes	□No		12.				
-Includes date/time/ID, Matrix: SL WT/0								
All containers needing preservation have beer	n □Yes	□No	ĽN/A	13.	\square HNO ₃	$\square H_2SO_4$	⊐ NaOH	☐ HC1
checked?								
pH paper Lot # All containers needing preservation are found	l to bo			Sample #				
in compliance with method recommendation?				Sattifile #				
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,	⊔Yes	□No	i≥ K/A					
NAOH>12 Cyanide)	L103	Ц 110	2 11/A					
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	rease							A)
DRO/8015 (water).	10000,			Initial wher	n completed:	Lot # of added		Date/Time preservative
Per Method, VOA pH is checked after analysis						preservative:		added:
Samples checked for dechlorination:	□Yes	□No	Ы N/A	14.		1,5		
KI starch test strips Lot #					G.			
Residual chlorine strips Lot #				F	ositive for Re	s. Chlorine? Y	N	· ·
SM 4500 CN samples checked for sulfide?	□Yes	□No	MN/A	15.				
Lead Acetate Strips Lot #				F	ositive for Sul	fide? Y	N	
Headspace in VOA Vials (>6mm):	□Yes	□No	⊠ Ñ/A	16				
Trip Blank Present:	□Yes	□No	DW/A	17.				
Trip Blank Custody Seals Present	□Yes	□No						
Pace Trip Blank Lot # (if applicable):								
Client Notification/ Resolution:				Field Data	Required?	Υ	/ N	
Person Contacted:					Date/Time:			
Comments/ Resolution:								

^{*} PM (Project Manager) review is documented electronically in LIMS.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests Sample Information:

Type: Drinking Water Origin: Raw Well Routine

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Lab No.: 70224339001 160 Drexel Ave. Client Sample ID.: N-00101

> 08/02/2022 07:05 AM Point N-00101 08/02/2022 01:41 PM Location Well 6

Collected By CLIENT

Collected:

Received:

Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Date	<u>2:</u> 08/16/2022 12:49	
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.66		1	ug/L	1	08/17/2022 1:50 PM	001 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	87%		1	%REC		08/17/2022 1:50 PM	001 AG2R1/2
Analytical Method:EPA 524.2							
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,1,1-Trichloroethane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,1,2,2-Tetrachloroethane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,1,2-Trichloroethane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,1,2-Trichlorotrifluoroethane	< 0.50	N3	1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,1-Dichloroethane	1.3		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,1-Dichloroethene	0.52		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,1-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,2,3-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,2,3-Trichloropropane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,2,4-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,2,4-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,2-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,2-Dichloroethane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,3,5-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,3-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,3-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
1,4-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
2,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
2-Chlorotoluene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
4-Chlorotoluene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Benzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Bromobenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Bromochloromethane	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Bromodichloromethane	< 0.50		1	ug/L		08/15/2022 5:36 PM	001 VG9C1/2
Bromoform	< 0.50		1	ug/L		08/15/2022 5:36 PM	001 VG9C1/2
Bromomethane	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Chlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Chlorodifluoromethane	<0.50	N3,L2	1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Chloroethane	<0.50	•	1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Chloroform	<0.50		1	ug/L		08/15/2022 5:36 PM	001 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

N-00101

Point

Client Sample ID.: N-00101

Lab No.: 70224339001

Sample Information: Type: Drinking Water Origin: Raw Well

Routine

160 Drexel Ave.

Collected:

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590

Attn To: Supt. Ingram Federal ID: 2902856

08/02/2022 07:05 AM Received: 08/02/2022 01:41 PM Location Well 6

Collected By CLIENT

Dibromochloromethane	<0.50		1	ug/L		08/15/2022 5:36 PM	001 VG9C1/2
Dibromomethane	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Dichlorodifluoromethane	<0.50	L2	1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Ethylbenzene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Hexachloro-1,3-butadiene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Isopropylbenzene (Cumene)	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Methyl-tert-butyl ether	<0.50		1	ug/L	10	08/15/2022 5:36 PM	001 VG9C1/2
Methylene Chloride	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Styrene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Tetrachloroethene	0.60		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Toluene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50		1	ug/L	80	08/15/2022 5:36 PM	001 VG9C1/2
Trichloroethene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Trichlorofluoromethane	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Vinyl chloride	<0.50		1	ug/L	2	08/15/2022 5:36 PM	001 VG9C1/2
cis-1,2-Dichloroethene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
cis-1,3-Dichloropropene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
m&p-Xylene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
n-Butylbenzene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
n-Propylbenzene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
o-Xylene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
p-Isopropyltoluene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
sec-Butylbenzene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
tert-Butylbenzene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
trans-1,2-Dichloroethene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
trans-1,3-Dichloropropene	<0.50		1	ug/L	5	08/15/2022 5:36 PM	001 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	94%		1	%REC		08/15/2022 5:36 PM	001 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	85%		1	%REC		08/15/2022 5:36 PM	001 VG9C1/2

Analytical Method:EPA 533		Prep Method:	EPA 533		Prep Date: 08/29/2022 11:56		
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
11CI-PF3OUdS	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
4:2 FTS	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
6:2 FTS	<3.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
8:2 FTS	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
9CI-PF3ONS	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
ADONA	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
HFPO-DA	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
NFDHA	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
PFBA	2.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
PFEESA	<1.9	L1,P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
PFHpS	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
PFMBA	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Sample Information:
Type: Drinking Water
Origin: Raw Well

Raw Well Routine

Pace

160 Drexel Ave.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856 Lab No. : 70224339001 Client Sample ID.: N-00101

Collected: 08/02/2022 07:05 AM Point N-00101 Received: 08/02/2022 01:41 PM Location Well 6

Collected By CLIENT

E.coli	Absent		1		Absent	08/03/2022 11:50	001 SP5T1/1
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
Analytical Method:SM22	9223B Colilert	Prep Method:	SM22 92	23B Colilert	Prep Date	e: 08/02/2022 5:50 PM	
Surr: 13C9-PFNA (S)	43%	S0	1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C8-PFOS (S)	87%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C8-PFOA (S)	46%	S0	1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C7-PFUdA (S)	41%	S0	1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C6-PFDA (S)	40%	S0	1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C5-PFPeA (S)	56%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C5-PFHxA (S)	51%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C4-PFHpA (S)	48%	S0	1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C4-PFBA (S)	58%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C3HFPO-DA(S)	54%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C3-PFHxS (S)	79%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C3-PFBS (S)	87%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C28:2FTS (S)	82%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C26:2FTS (S)	82%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C24:2FTS (S)	70%		1	%REC		09/04/2022 9:39 PM	001 BP351/2
Surr: 13C2-PFDoA (S)	42%	S0	1	%REC		09/04/2022 9:39 PM	001 BP351/2
Perfluoroundecanoic acid	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
Perfluorooctanoic acid	4.7	P4	1	ng/L	10	09/04/2022 9:39 PM	001 BP351/2
Perfluorooctanesulfonic acid	4.8	P4	1	ng/L	10	09/04/2022 9:39 PM	001 BP351/2
Perfluorononanoic acid	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
Perfluorohexanoic acid	2.7	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
Perfluorohexanesulfonic acid	2.8	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
Perfluoroheptanoic acid	1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
Perfluorododecanoic acid	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
Perfluorodecanoic acid	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
Perfluorobutanesulfonic acid	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
PFPeS	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
PFPeA	3.0	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2
PFMPA	<1.9	P4	1	ng/L		09/04/2022 9:39 PM	001 BP351/2

Qualifiers:

Total Coliforms

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

Absent

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Kimberley Mack

Absent

08/03/2022 11:50

001 SP5T1/1

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests Sample Information:

Type: Drinking Water Origin: Raw Well Routine

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram

Lab No.: 70224339002 Client Sample ID.: N-07785

Federal ID: 2902856

Collected: 08/02/2022 07:10 AM Point N-07785 Received: 08/02/2022 01:41 PM Location Well 7A

Collected By CLIENT

Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Da	te: 08/16/2022 12:49	
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.78		1	ug/L	1	08/17/2022 2:22 PM	002 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	83%		1	%REC		08/17/2022 2:22 PM	002 AG2R1/2
Analytical Method: EPA 524.2							
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,1,1-Trichloroethane	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,1,2,2-Tetrachloroethane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,1,2-Trichloroethane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,1,2-Trichlorotrifluoroethane	< 0.50	N3	1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,1-Dichloroethane	1.8		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,1-Dichloroethene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,1-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,2,3-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,2,3-Trichloropropane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,2,4-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,2,4-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,2-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,2-Dichloroethane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,3,5-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,3-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,3-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
1,4-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
2,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
2-Chlorotoluene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
4-Chlorotoluene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Benzene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Bromobenzene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Bromochloromethane	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Bromodichloromethane	<0.50		1	ug/L		08/15/2022 5:10 PM	002 VG9C1/2
Bromoform	<0.50		1	ug/L		08/15/2022 5:10 PM	002 VG9C1/2
Bromomethane	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Chlorodifluoromethane	<0.50	N3,L2	1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Chloroethane	<0.50	110,22	1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Chloroform	<0.50		1	ug/L	J	08/15/2022 5:10 PM	002 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Omoromeniane	\0.50		1	ug/L	5	00/ 13/2022 3. TO PIVI	002 V 030 1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Test results meet the requirements of NELAC unless otherwise noted.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-07785

Lab No.: 70224339002

Type: Drinking Water
Origin: Raw Well
Routine

Sample Information:

/ Pace*
575 Broad Hollow Road, Melville, NY 11747

TEL: (631) 694-3040 FAX: (631) 420-8436 <u>www.pacelabs.com</u>

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

160 Drexel Ave.

Collected: 08/02/2022 07:10 AM Point N-07785 Received: 08/02/2022 01:41 PM Location Well 7A

Collected By CLIENT

Dibromochloromethane	<0.50		1	ug/L		08/15/2022 5:10 PM	002 VG9C1/2
Dibromomethane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Dichlorodifluoromethane	<0.50	L2	1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Ethylbenzene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Hexachloro-1,3-butadiene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Isopropylbenzene (Cumene)	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Methyl-tert-butyl ether	<0.50		1	ug/L	10	08/15/2022 5:10 PM	002 VG9C1/2
Methylene Chloride	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Styrene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Tetrachloroethene	0.54		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Toluene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50		1	ug/L	80	08/15/2022 5:10 PM	002 VG9C1/2
Trichloroethene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Trichlorofluoromethane	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Vinyl chloride	< 0.50		1	ug/L	2	08/15/2022 5:10 PM	002 VG9C1/2
cis-1,2-Dichloroethene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
cis-1,3-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
m&p-Xylene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
n-Butylbenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
n-Propylbenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
o-Xylene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
p-Isopropyltoluene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
sec-Butylbenzene	< 0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
tert-Butylbenzene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
trans-1,2-Dichloroethene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
trans-1,3-Dichloropropene	<0.50		1	ug/L	5	08/15/2022 5:10 PM	002 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	94%		1	%REC		08/15/2022 5:10 PM	002 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	92%		1	%REC		08/15/2022 5:10 PM	002 VG9C1/2

Analytical Method:EPA 533		Prep Method:	EPA 533		Prep Date: 08/29/2022 11:56		
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
11CI-PF3OUdS	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
4:2 FTS	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
6:2 FTS	<3.6		1	ng/L		09/04/2022 10:29	002 BP351/2
8:2 FTS	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
9CI-PF3ONS	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
ADONA	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
HFPO-DA	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
NFDHA	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
PFBA	1.9		1	ng/L		09/04/2022 10:29	002 BP351/2
PFEESA	<1.8	L1	1	ng/L		09/04/2022 10:29	002 BP351/2
PFHpS	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
PFMBA	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Kimberley Mack

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Lab No.: 70224339002

Sample Information:

Type: Drinking Water Origin: Raw Well

Routine

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Collected:

Received:

160 Drexel Ave. Client Sample ID.: N-07785

> 08/02/2022 07:10 AM Point N-07785 08/02/2022 01:41 PM Location Well 7A

Collected By CLIENT

PFMPA	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
PFPeA	2.2		1	ng/L		09/04/2022 10:29	002 BP351/2
PFPeS	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
Perfluorobutanesulfonic acid	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
Perfluorodecanoic acid	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
Perfluorododecanoic acid	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
Perfluoroheptanoic acid	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
Perfluorohexanesulfonic acid	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
Perfluorohexanoic acid	2.1		1	ng/L		09/04/2022 10:29	002 BP351/2
Perfluorononanoic acid	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
Perfluorooctanesulfonic acid	<1.8		1	ng/L	10	09/04/2022 10:29	002 BP351/2
Perfluorooctanoic acid	3.4		1	ng/L	10	09/04/2022 10:29	002 BP351/2
Perfluoroundecanoic acid	<1.8		1	ng/L		09/04/2022 10:29	002 BP351/2
Surr: 13C2-PFDoA (S)	41%	S0	1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C24:2FTS (S)	79%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C26:2FTS (S)	79%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C28:2FTS (S)	80%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C3-PFBS (S)	104%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C3-PFHxS (S)	86%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C3HFPO-DA(S)	54%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C4-PFBA (S)	56%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C4-PFHpA (S)	46%	S0	1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C5-PFHxA (S)	53%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C5-PFPeA (S)	61%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C6-PFDA (S)	34%	S0	1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C7-PFUdA (S)	36%	S0	1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C8-PFOA (S)	38%	S0	1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C8-PFOS (S)	80%		1	%REC		09/04/2022 10:29	002 BP351/2
Surr: 13C9-PFNA (S)	35%	S0	1	%REC		09/04/2022 10:29	002 BP351/2
Analytical Method:SM22	9223B Colilert	Prep Method:	SM22 9	223B Colilert	Prep Date	2: 08/02/2022 5:50 PM	
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:

Qualifiers:

E.coli

Total Coliforms

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content. ND - Not Detected at or above adjusted reporting limit.

Absent

Absent

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Absent

Absent

08/03/2022 11:50

08/03/2022 11:50

002 SP5T1/1

002 SP5T1/1

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Sample Information:

Type: Drinking Water Origin: Raw Well Routine

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram

Lab No.: 70224339004 Client Sample ID.: N-05007

Federal ID: 2902856

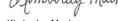
Collected: 08/02/2022 09:40 AM Point N-05007 Received: 08/02/2022 01:41 PM Location Well 10

Collected By CLIENT

Analytical Method: EPA 522		Prep Method:	EPA 522		Prep Da	Prep Date: 08/16/2022 12:49			
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:		
1,4-Dioxane (p-Dioxane)	0.61		1	ug/L	1	08/17/2022 7:35 PM	004 AG2R1/2		
Surr: 1,4-Dioxane-d8 (S)	89%		1	%REC		08/17/2022 7:35 PM	004 AG2R1/2		
Analytical Method:EPA 524.2									
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:		
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
1,1,1-Trichloroethane	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
1,1,2,2-Tetrachloroethane	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,1,2-Trichloroethane	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
1,1,2-Trichlorotrifluoroethane	< 0.50	N3	1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
I,1-Dichloroethane	0.98		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
1,1-Dichloroethene	1.2		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,1-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,2,3-Trichlorobenzene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,2,3-Trichloropropane	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,2,4-Trichlorobenzene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,2,4-Trimethylbenzene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,2-Dichlorobenzene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,2-Dichloroethane	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,2-Dichloropropane	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,3,5-Trimethylbenzene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,3-Dichlorobenzene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,3-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
,4-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
2,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
2-Chlorotoluene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
I-Chlorotoluene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Benzene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Bromobenzene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Bromochloromethane	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Bromodichloromethane	<0.50		1	ug/L		08/15/2022 4:18 PM	004 VG9C1/2		
Bromoform	<0.50		1	ug/L		08/15/2022 4:18 PM	004 VG9C1/2		
Bromomethane	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Carbon tetrachloride	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Chlorobenzene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Chlorodifluoromethane	<0.50	N3,L2	1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Chloroethane	<0.50	-,	1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		
Chloroform	<0.50		1	ug/L	-	08/15/2022 4:18 PM	004 VG9C1/2		
Chloromethane	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2		

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.


ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Sample Information:

Type: Drinking Water Origin: Raw Well Routine

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

160 Drexel Ave.

Collected:

Received:

Lab No.: 70224339004 Client Sample ID.: N-05007

08/02/2022 09:40 AM Point N-05007 08/02/2022 01:41 PM Location Well 10

Collected By CLIENT

Dibromochloromethane	<0.50		1	ug/L		08/15/2022 4:18 PM	004 VG9C1/2
Dibromomethane	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Dichlorodifluoromethane	< 0.50	L2	1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Ethylbenzene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Hexachloro-1,3-butadiene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Isopropylbenzene (Cumene)	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Methyl-tert-butyl ether	< 0.50		1	ug/L	10	08/15/2022 4:18 PM	004 VG9C1/2
Methylene Chloride	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Styrene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Tetrachloroethene	3.4		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Toluene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Total Trihalomethanes (Calc.)	< 0.50		1	ug/L	80	08/15/2022 4:18 PM	004 VG9C1/2
Trichloroethene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Trichlorofluoromethane	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Vinyl chloride	< 0.50		1	ug/L	2	08/15/2022 4:18 PM	004 VG9C1/2
cis-1,2-Dichloroethene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
cis-1,3-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
m&p-Xylene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
n-Butylbenzene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
n-Propylbenzene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
o-Xylene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
p-Isopropyltoluene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
sec-Butylbenzene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
tert-Butylbenzene	<0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
trans-1,2-Dichloroethene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
trans-1,3-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 4:18 PM	004 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	101%		1	%REC		08/15/2022 4:18 PM	004 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	92%		1	%REC		08/15/2022 4:18 PM	004 VG9C1/2

Analytical Method:EPA 533		Prep Method:	EPA 533		Prep Date: 08/29/2022 11:56			
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:	
11CI-PF3OUdS	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
4:2 FTS	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
6:2 FTS	<3.8		1	ng/L		09/05/2022 12:24	004 BP351/2	
8:2 FTS	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
9CI-PF3ONS	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
ADONA	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
HFPO-DA	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
NFDHA	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
PFBA	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
PFEESA	<1.9	L1	1	ng/L		09/05/2022 12:24	004 BP351/2	
PFHpS	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	
PFMBA	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2	

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-05007

Lab No.: 70224339004

Sample Information: Type: Drinking Water

Origin: Raw Well Routine

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

160 Drexel Ave.

Collected: 08/02/2022 09:40 AM Point N-05007 Received: 08/02/2022 01:41 PM Location Well 10

Collected By CLIENT

PFMPA	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
PFPeA	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
PFPeS	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Perfluorobutanesulfonic acid	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Perfluorodecanoic acid	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Perfluorododecanoic acid	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Perfluoroheptanoic acid	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Perfluorohexanesulfonic acid	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Perfluorohexanoic acid	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Perfluorononanoic acid	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Perfluorooctanesulfonic acid	<1.9		1	ng/L	10	09/05/2022 12:24	004 BP351/2
Perfluorooctanoic acid	<1.9		1	ng/L	10	09/05/2022 12:24	004 BP351/2
Perfluoroundecanoic acid	<1.9		1	ng/L		09/05/2022 12:24	004 BP351/2
Surr: 13C2-PFDoA (S)	38%	S0	1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C24:2FTS (S)	62%		1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C26:2FTS (S)	76%		1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C28:2FTS (S)	77%		1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C3-PFBS (S)	77%		1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C3-PFHxS (S)	76%		1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C3HFPO-DA(S)	46%	S0	1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C4-PFBA (S)	59%		1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C4-PFHpA (S)	41%	S0	1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C5-PFHxA (S)	46%	S0	1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C5-PFPeA (S)	54%		1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C6-PFDA (S)	26%	S0	1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C7-PFUdA (S)	30%	S0	1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C8-PFOA (S)	36%	S0	1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C8-PFOS (S)	79%		1	%REC		09/05/2022 12:24	004 BP351/2
Surr: 13C9-PFNA (S)	29%	S0	1	%REC		09/05/2022 12:24	004 BP351/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-07353

Lab No.: 70224339007

Type: Drinking Water
Origin: Raw Well
Routine

Sample Information:

/ Pace*
575 Broad Hollow Road, Melville, NY 11747

TEL: (631) 694-3040 FAX: (631) 420-8436 <u>www.pacelabs.com</u>

Westbury Water & Fire Dist.

08/02/2022 01:41 PM

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

160 Drexel Ave.

Collected:

Received:

2902856 08/02/2022 09:50 AM Point N-07353

Location Well 14

Collected By CLIENT

Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Date: 08/16/2022 12:49		
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	1.7*		1	ug/L	1	08/17/2022 8:06 PM	007 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	91%		1	%REC		08/17/2022 8:06 PM	007 AG2R1/2
Analytical Method: EPA 524.2							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
I,1,1-Trichloroethane	0.68		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,1,2,2-Tetrachloroethane	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,1,2-Trichloroethane	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,1,2-Trichlorotrifluoroethane	<0.50	N3	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,1-Dichloroethane	3.9		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,1-Dichloroethene	1.3		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,1-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,2,3-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,2,3-Trichloropropane	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,2,4-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,2,4-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,2-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,2-Dichloroethane	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
I,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,3,5-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,3-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
,3-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
I,4-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
2,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
2-Chlorotoluene	< 0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
1-Chlorotoluene	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Benzene	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Bromobenzene	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Bromochloromethane	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Bromodichloromethane	<0.50		1	ug/L		08/15/2022 6:54 PM	007 VG9C1/2
Bromoform	<0.50	v3	1	ug/L		08/15/2022 6:54 PM	007 VG9C1/2
Bromomethane	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Chlorodifluoromethane	<0.50	N3	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Chloroethane	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Chloroform	<0.50		1	ug/L	-	08/15/2022 6:54 PM	007 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).
Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Sample Information:
Type: Drinking Water
Origin: Raw Well
Routine

Pace575 Broad Hollow Road, Melville, NY 11747

TEL: (631) 694-3040 FAX: (631) 420-8436

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856 Lab No. : 70224339007 Client Sample ID.: N-07353

Collected: 08/02/2022 09:50 AM Point N-07353 Received: 08/02/2022 01:41 PM Location Well 14

www.pacelabs.com

Collected By CLIENT

Dibromochloromethane	<0.50	1	ug/L		08/15/2022 6:54 PM	007 VG9C1/2
Dibromomethane	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Dichlorodifluoromethane	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Ethylbenzene	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Hexachloro-1,3-butadiene	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Isopropylbenzene (Cumene)	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Methyl-tert-butyl ether	<0.50	1	ug/L	10	08/15/2022 6:54 PM	007 VG9C1/2
Methylene Chloride	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Styrene	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Tetrachloroethene	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Toluene	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50	1	ug/L	80	08/15/2022 6:54 PM	007 VG9C1/2
Trichloroethene	1.2	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Trichlorofluoromethane	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Vinyl chloride	<0.50	1	ug/L	2	08/15/2022 6:54 PM	007 VG9C1/2
cis-1,2-Dichloroethene	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
cis-1,3-Dichloropropene	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
m&p-Xylene	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
n-Butylbenzene	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
n-Propylbenzene	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
o-Xylene	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
p-Isopropyltoluene	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
sec-Butylbenzene	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
tert-Butylbenzene	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
trans-1,2-Dichloroethene	< 0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
trans-1,3-Dichloropropene	<0.50	1	ug/L	5	08/15/2022 6:54 PM	007 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	98%	1	%REC		08/15/2022 6:54 PM	007 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	90%	1	%REC		08/15/2022 6:54 PM	007 VG9C1/2

Analytical Method:EPA 533		Prep Method:	EPA 533		Prep Date: 08/29/2022 11:56		
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
11CI-PF3OUdS	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
4:2 FTS	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
6:2 FTS	<3.9		1	ng/L		09/04/2022 11:02	007 BP351/2
8:2 FTS	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
9CI-PF3ONS	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
ADONA	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
HFPO-DA	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
NFDHA	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
PFBA	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
PFEESA	<1.9	L1	1	ng/L		09/04/2022 11:02	007 BP351/2
PFHpS	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
PFMBA	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC

unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Result(s) reported meet(s) NYS Regulatory Limit(s).
Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Lab No.: 70224339007

Sample Information:

Type: Drinking Water Origin: Raw Well Routine

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Client Sample ID.: N-07353

Collected: 08/02/2022 09:50 AM Point N-07353 Received: 08/02/2022 01:41 PM Location Well 14

www.pacelabs.com

Collected By CLIENT

PFMPA	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
PFPeA	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
PFPeS	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Perfluorobutanesulfonic acid	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Perfluorodecanoic acid	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Perfluorododecanoic acid	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Perfluoroheptanoic acid	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Perfluorohexanesulfonic acid	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Perfluorohexanoic acid	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Perfluorononanoic acid	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Perfluorooctanesulfonic acid	<1.9		1	ng/L	10	09/04/2022 11:02	007 BP351/2
Perfluorooctanoic acid	<1.9		1	ng/L	10	09/04/2022 11:02	007 BP351/2
Perfluoroundecanoic acid	<1.9		1	ng/L		09/04/2022 11:02	007 BP351/2
Surr: 13C2-PFDoA (S)	11%	S0	1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C24:2FTS (S)	58%		1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C26:2FTS (S)	71%		1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C28:2FTS (S)	73%		1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C3-PFBS (S)	77%		1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C3-PFHxS (S)	69%		1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C3HFPO-DA(S)	40%	S0	1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C4-PFBA (S)	52%		1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C4-PFHpA (S)	32%	S0	1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C5-PFHxA (S)	40%	S0	1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C5-PFPeA (S)	49%	S0	1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C6-PFDA (S)	10%	S0	1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C7-PFUdA (S)	10%	S0	1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C8-PFOA (S)	24%	S0	1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C8-PFOS (S)	73%		1	%REC		09/04/2022 11:02	007 BP351/2
Surr: 13C9-PFNA (S)	15%	S0	1	%REC		09/04/2022 11:02	007 BP351/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests **Sample Information:**

Type: Drinking Water Origin: Raw Well Routine

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Collected:

Received:

Lab No.: 70224339012 Client Sample ID.: AS-6/7A

08/02/2022 07:35 AM Point AS-6/7A 08/02/2022 01:41 PM Location Wells 6 & 7A Collected By CLIENT **AIRSTRIPPER**

www.pacelabs.com

Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Dat	e: 08/16/2022 12:49	
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.76		1	ug/L	1	08/18/2022 12:25	012 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	90%		1	%REC		08/18/2022 12:25	012 AG2R1/2
Analytical Method:EPA 524.2							
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,1,1-Trichloroethane	<0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,1,2,2-Tetrachloroethane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,1,2-Trichloroethane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,1,2-Trichlorotrifluoroethane	< 0.50	N3	1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,1-Dichloroethane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,1-Dichloroethene	<0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,1-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,2,3-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,2,3-Trichloropropane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,2,4-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,2,4-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,2-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,2-Dichloroethane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,3,5-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,3-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,3-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
1,4-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
2,2-Dichloropropane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
2-Chlorotoluene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
4-Chlorotoluene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Benzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Bromobenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Bromochloromethane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Bromodichloromethane	< 0.50		1	ug/L		08/15/2022 12:50	012 VG9C1/2
Bromoform	< 0.50		1	ug/L		08/15/2022 12:50	012 VG9C1/2
Bromomethane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Chlorodifluoromethane	<0.50	N3,L2	1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Chloroethane	<0.50	,	1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Chloroform	<0.50		1	ug/L	-	08/15/2022 12:50	012 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content. ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests **Sample Information:**

Type: Drinking Water Origin: Raw Well Routine

Collected:

Received:

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Lab No.: 70224339012 Client Sample ID.: AS-6/7A

08/02/2022 07:35 AM Point AS-6/7A 08/02/2022 01:41 PM Location Wells 6 & 7A Collected By CLIENT **AIRSTRIPPER**

Dibromochloromethane	<0.50		1	ug/L		08/15/2022 12:50	012 VG9C1/2
Dibromomethane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Dichlorodifluoromethane	< 0.50	L2	1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Ethylbenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Hexachloro-1,3-butadiene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Isopropylbenzene (Cumene)	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Methyl-tert-butyl ether	< 0.50		1	ug/L	10	08/15/2022 12:50	012 VG9C1/2
Methylene Chloride	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Styrene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Tetrachloroethene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Toluene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50		1	ug/L	80	08/15/2022 12:50	012 VG9C1/2
Trichloroethene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Trichlorofluoromethane	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Vinyl chloride	< 0.50		1	ug/L	2	08/15/2022 12:50	012 VG9C1/2
cis-1,2-Dichloroethene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
cis-1,3-Dichloropropene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
m&p-Xylene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
n-Butylbenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
n-Propylbenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
o-Xylene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
p-Isopropyltoluene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
sec-Butylbenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
tert-Butylbenzene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
trans-1,2-Dichloroethene	< 0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
trans-1,3-Dichloropropene	<0.50		1	ug/L	5	08/15/2022 12:50	012 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	94%		1	%REC		08/15/2022 12:50	012 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	87%		1	%REC		08/15/2022 12:50	012 VG9C1/2

Analytical Method: EPA 533	<u> </u>	Prep Method:	EPA 533		Prep Date: 08/30/2022 11:56		
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
11CI-PF3OUdS	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
4:2 FTS	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
6:2 FTS	<3.8		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
8:2 FTS	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
9CI-PF3ONS	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
ADONA	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
HFPO-DA	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
NFDHA	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
PFBA	2.2		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
PFEESA	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
PFHpS	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
PFMBA	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests **Sample Information:**

Type: Drinking Water Origin: Raw Well Routine

160 Drexel Ave.

Collected:

Received:

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Lab No.: 70224339012 Client Sample ID.: AS-6/7A

08/02/2022 07:35 AM Point AS-6/7A 08/02/2022 01:41 PM Location Wells 6 & 7A Collected By CLIENT **AIRSTRIPPER**

PFMPA	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
PFPeA	2.3		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
PFPeS	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Perfluorobutanesulfonic acid	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Perfluorodecanoic acid	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Perfluorododecanoic acid	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Perfluoroheptanoic acid	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Perfluorohexanesulfonic acid	2.0		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Perfluorohexanoic acid	2.1		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Perfluorononanoic acid	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Perfluorooctanesulfonic acid	2.9		1	ng/L	10	09/08/2022 7:34 PM	012 BP351/2
Perfluorooctanoic acid	3.6		1	ng/L	10	09/08/2022 7:34 PM	012 BP351/2
Perfluoroundecanoic acid	<1.9		1	ng/L		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C2-PFDoA (S)	41%	S0	1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C24:2FTS (S)	86%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C26:2FTS (S)	91%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C28:2FTS (S)	90%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C3-PFBS (S)	129%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C3-PFHxS (S)	100%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C3HFPO-DA(S)	75%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C4-PFBA (S)	73%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C4-PFHpA (S)	67%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C5-PFHxA (S)	80%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C5-PFPeA (S)	87%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C6-PFDA (S)	39%	S0	1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C7-PFUdA (S)	39%	S0	1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C8-PFOA (S)	57%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C8-PFOS (S)	92%		1	%REC		09/08/2022 7:34 PM	012 BP351/2
Surr: 13C9-PFNA (S)	46%	S0	1	%REC		09/08/2022 7:34 PM	012 BP351/2
Analytical Method: SM22 92	223B Colilert	Prep Method:	SM22 92	223B Colilert	Prep Date	2: 08/02/2022 5:50 PM	
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
			-			00/00/0000 11 =0	0.10 OD=T.11

Qualifiers:

E.coli

Total Coliforms

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

Absent

Absent

ND - Not Detected at or above adjusted reporting limit. J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Absent

Absent

08/03/2022 11:50

08/03/2022 11:50

012 SP5T1/1

012 SP5T1/1

Test results meet the requirements of NELAC unless otherwise noted.

Pace

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Type: Drinking Water
Origin: Raw Well
Routine

Sample Information:

575 Broad Hollow Road, Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436

www.pacelabs.com

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856 Lab No. : 70224339014 Client Sample ID.: NB-10/14

Collected: 08/02/2022 10:05 AM Point NB-10/14

Received: 08/02/2022 01:41 PM Location Wells 10 & 14

Collected By CLIENT Blended

Analytical Method: EPA 522		Prep Method:	EPA 522		Prep Date:	08/16/2022 12:49	
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	1.1*		1	ug/L	1	08/17/2022 6:00 PM	014 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	91%		1	%REC		08/17/2022 6:00 PM	014 AG2R1/2

page 38 of 44

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Date Reported: 09/16/2022

Kimberley Mack

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

WorkOrder:

70224339

Laboratory Certifications

Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174

Alaska DEC- CS/UST/LUST Alabama Certification #: 41320

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007

Maine Certification #: FL01264 Maryland Certification: #346

Massachusetts Certification #: M-FL1264

Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236 Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710 North Dakota Certification #: R-216

Ohio DEP 87780

Oklahoma Certification #: D9947
Pennsylvania Certification #: 68-00547
Puerto Rico Certification #: FL01264
South Carolina Certification: #96042001
Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

Date Reported: 09/16/2022

page 39 of 44

WorkOrder:

70224339

Laboratory Certifications

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Date Reported: 09/16/2022 page 40 of 44

WorkOrder:

70224339

Additional Qualifiers

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- N3 Accreditation is not offered by the relevant laboratory accrediting body for this parameter.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

Date Reported: 09/16/2022 page 41 of 44

Client Info: Name or Code: Westbuy Water Past. Address:
Phone #:
Attn:
Proj. # or (Name):
Bill To:
Copies To:

Sample Request Form PUBLIC WATER SUPPLIER

Collected By: M. RIGNANO

Accepted By: Sandward 812

Cooler Temp: 0.7 °C 1341

WELL OFF LINE
□ WELL RUN TO SYSTEM
□ YES □ NO VOC'S PRESERVED WITH HCI

Sample Types

PW - Potable Water GW - Groundwater SW - Surface Water

WW - Waste Water AQ - Aqueous

S - Soil

All PFAS are Method 533

Purpose

RO - Routine RE - Resample

S - Special

Origin

D - Distribution
RW - Raw Well
TW - Treated Well

T - Tank

MW - Monitoring Well
I - Influent
E - Effluent

Treatment Types

AST - Air Stripper

GAC - Granular Activated Charcoal

N - Nitrate Removal Plant FE - Iron Removal Plant

O - Other

Date/Time Collected:	Sample Type	Location	Origin	Treatment Type	Purpose	Field Readings Cl ₂ pH/Temp	Analysis	Lab No.
8-2-2022	GW	Well-Le	RW		20		1.4 Dioxane PFOA/PFOS POC/MIC 533	
8/2/22 70	GW	Well-74 N-07788	RW		20			
Flat 820 M	GW	N-02682	RW		150			
CURT		W-05007	Ra		20			
Mala 1105	Gw	N- 5654	200		150			
8/2/22.10/m	GW	WE 5655	2w		20			
8/2/20-950 150	GW	M= 57253	200		RO			
8/2/22/20	GW	-15	PW		20			
2/2/22 830	GW	8497	1200		20			
8/2/22 920	GW	10451	1200		20			
82320	GW	24-18	RW		120			
Remarks:	ell-	12 Ran To Wa	ste					

575 Broad Hollow Rd., Melville, NY 11747 (631) 694-3040 Fax: (631) 420-8436

Client Info: Name or Code:
Address:
Phone #:
Attn:
Proj. # or (Name):
Bill To:
Copies To:

Sample Request Form PUBLIC WATER SUPPLIER

Date: 8-2	-2022	☐ WELL O	FF LINE
Collected By: M. R.	1'GNANO	□ WELL R	UN TO SYSTEM
Cooler Temp:	7 °C 1341	812 OYES OF	NO VOC'S PRESERVED WITH HCI
ample Types W - Potable Water W - Groundwater N - Surface Water W - Waste Water Q - Aqueous - Soil	Purpose RO - Routine RE - Resample S - Special	Origin D - Distribution RW - Raw Well TW - Treated Well T - Tank MW - Monitoring Well I - Influent E - Effluent	Treatment Types AST - Air Stripper GAC - Granular Activated Charcoal N - Nitrate Removal Plant FE - Iron Removal Plant O - Other

Date/Time Collected: /	Sample Type	Location	Origin	Treatment Type	Purpose	Field Readings Cl ₂ pH/Temp		Analysis	Lab No.
8-2-4000	PW	wells 6 70 Blonded	E		120	.89	634.	1.4 DIOXANE/PROAIPROS POC/MIC 533	
Balan	PW	Wells 9/16 Blanded	E		20	.15	7.02.	1.4 Dioxane	21 2
8/2/22 1005	A	Wells 18 M Blooded	2		20	, 54	820	1.4 Dioxane/PROAIPROS POC/MIC 533 1.4 Dioxane	
							4.00		
-									
Remarks:	Ass	PFAS are					L		
	88.88	Trab are h	1-eth	od	53	5	_		

	S	ample	Condit	ion Upor	n Rec	WO#:7	02243	339
Pace Analytical *	Client	lame:			Projec	PM: JSA CLIENT: WWD		e: 08/12/22
Courier: Fed Ex UPS USPS Client Tracking #:		. / . /	Pace 🗍tl	her		CLILIT. WIII		
Custody Seal on Cooler/Box Present:Ye	s X No	Seals	intact: 🔲 Y	'es□ No 🗹	N/A	Temperature	Blank Present:	□Yes 🗘 No
Packing Material: Bubble Wrap 🔊 Bubble	Bags [Ziploc 🐧	∑ None □0	Ither		Type of Ice:		
Thermometer Used: THOST 14148	Correct	ion Facti): + O.	[Samples on ic	e, cooling proces	s has begun
Cooler Temperature(°C): . 7			ture Correc		.8	Date/Time 50	35A kits placed	in freezer
Temp should be above freezing to 6.0°C USDA Regulated Soil [MIN/A, water sample	}		•,	Date and	Initials of	e person examining	contents: KL	18/2/2
Did samples originate in a quarantine zone w	thin the U	nited Sta	tes: AL, AR, C	A, FL, GA, ID, L	A, MS, NC,	Did samples o	rignate from a fo	reign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		s \square No						o)? ☐ Yes⊠ No
If Yes to either question, fill out a Regulate		ecklist (-L1-C-010)	and include	with SCUR,			
						СОММЕ	NTS:	
Chain of Custody Present:	⊠Yes	□No	\$0.	Ĺ				
Chain of Custody Filled Out:	Yes	□No		2				
Chain of Custody Relinquished:	⊠ Yes	□No		3.				
Sampler Name & Signature on COC:	√ZYes	□No	□N/A	4.				
Samples Arrived within Hold Time:	ZYes	□No	010	5.				31
Short Hold Time Analysis (<72hr):	Z Yes	□No		6. See	below			
Rush Turn Around Time Requested:	□Yes	ØNo		7.				
Sufficient Volume: (Triple volume provided for	-	□No		8.				
Correct Containers Used:	⊠Yes	□No		9.		a A	V.	4
-Pace Containers Used:	Z Yes	□No		-				
Containers Intact:	Yes	□No	/	10.		- 2 F		
Filtered volume received for Dissolved tests	□Yes	□No	ØN/A	11.	Note if sec	fiment is visible in	the dissolved cor	ntainer,
Sample Labels match COC:	∠Yes	⊡No		12.				
-Includes date/time/ID, Matrix: SI/W) (- L	£11/1	17	- IIII0	= 11.00		101
All containers needing preservation have beer checked?	i Lives	□No	ΦN/A	13.	□ HNO ₃	□H ₂ SO ₄ □	HOeN □	HCI
pH paper Lot #			1				[#]	
All containers needing preservation are found	to be			Sample #		383		
in compliance with method recommendation?			-					4
(HNO3, H2SO4, HCl, NaOH>9 Sulfide,	□Yes	□No	DN/A					
NAOH>12 Cyanide)								3
Exceptions: VOA, Coliform, TOC/DOC, Oil and Gr	ease,						1	
DRO/8015 (water).			**	Initial when	completed	: Lot # of added	Date/T	ime preservative
Per Method, VOA pH is checked after analysis			-			preservative:	added:	
Samples checked for dechlorination:	□Yes	□No	ZN/A	14.				
KI starch test strips Lot #	20							
Residual chlorine strips Lot #					ositive for R	tes. Chlorine? Y N		
SM 4500 CN samples checked for sulfide?	□Yes	□No	ØN/A	15.				
Lead Acetate Strips Lot #					ositive for S	ulfide? Y N		
Headspace in VOA Vials (>6mm):	□Yes	No	□N/A	16.				
Trip Blank Present Trip Blank Custody Seals Present	□Yes	(ZNO	□N/A	17_			19	
Pace Trip Blank Lot # (if applicable):	□Yes	□No	DM/V					
Client Notification/ Resolution:		-		Field Date D	on vise d?			
Person Contacted:	IGNAM	10		Field Data R		8/1/22	N	
Comments/ Resolution:		in Nes F	a Well		Date/Time: 11 , Well	19162	1 L 10 - L-	
DAGE	00 4		140.11	7 1001	1 2011	ic, wall	4 West	
		100						

PM (Project Manager) review is documented electronically in LIMS.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Sample Information:

Type: Drinking Water
Origin: Raw Well
Routine

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856 Lab No. : 70224339006 Client Sample ID.: N-05655

08/02/2022 10:30 AM Point

08/02/2022 01:41 PM Location Well 12

N-05655

Collected By CLIENT

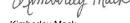
Collected:

Received:

Analytical Method: EPA 522		Prep Method:	EPA 522		Prep Dat		
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
,4-Dioxane (p-Dioxane)	0.25		1	ug/L	1	08/17/2022 3:40 PM	006 AG2R1/2
urr: 1,4-Dioxane-d8 (S)	92%		1	%REC		08/17/2022 3:40 PM	006 AG2R1/2
Analytical Method:EPA 524.2							
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
1,1-Trichloroethane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
,1,2,2-Tetrachloroethane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
1,2-Trichloroethane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
,1,2-Trichlorotrifluoroethane	<0.50	N3	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
1-Dichloroethane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
1-Dichloroethene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
1-Dichloropropene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
2,3-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
2,3-Trichloropropane	< 0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
2,4-Trichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
2,4-Trimethylbenzene	< 0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
2-Dichlorobenzene	< 0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
2-Dichloroethane	< 0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
2-Dichloropropane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
3,5-Trimethylbenzene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
3-Dichlorobenzene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
3-Dichloropropane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
,4-Dichlorobenzene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
2-Dichloropropane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
-Chlorotoluene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
-Chlorotoluene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
enzene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
romobenzene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
romochloromethane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
romodichloromethane	<0.50		1	ug/L	J	08/15/2022 6:27 PM	006 VG9C1/2
romoform	<0.50	v3	1	ug/L		08/15/2022 6:27 PM	006 VG9C1/2
romomethane	<0.50	٧٥	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
arbon tetrachloride	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
hlorobenzene	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
hlorodifluoromethane	<0.50	N3	1	ug/L ug/L	5 5	08/15/2022 6:27 PM 08/15/2022 6:27 PM	006 VG9C1/2
hloroethane	<0.50 <0.50	INO	1	-	5 5	08/15/2022 6:27 PM	006 VG9C1/2
hloroform				ug/L	ວ		006 VG9C1/2
	<0.50		1	ug/L	-	08/15/2022 6:27 PM	
Chloromethane	<0.50		1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.


ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).
Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested

Lab No.: 70224339006

Sample Information: Type: Drinking Water Origin: Raw Well Routine

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

160 Drexel Ave.

Client Sample ID.: N-05655

Collected: 08/02/2022 10:30 AM Point N-05655 Received: 08/02/2022 01:41 PM Location Well 12

Collected By CLIENT

Dibromochloromethane	<0.50	1	ug/L		08/15/2022 6:27 PM	006 VG9C1/2
Dibromomethane	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Dichlorodifluoromethane	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Ethylbenzene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Hexachloro-1,3-butadiene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Isopropylbenzene (Cumene)	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Methyl-tert-butyl ether	<0.50	1	ug/L	10	08/15/2022 6:27 PM	006 VG9C1/2
Methylene Chloride	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Styrene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Tetrachloroethene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Toluene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50	1	ug/L	80	08/15/2022 6:27 PM	006 VG9C1/2
Trichloroethene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Trichlorofluoromethane	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Vinyl chloride	<0.50	1	ug/L	2	08/15/2022 6:27 PM	006 VG9C1/2
cis-1,2-Dichloroethene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
cis-1,3-Dichloropropene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
m&p-Xylene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
n-Butylbenzene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
n-Propylbenzene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
o-Xylene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
p-Isopropyltoluene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
sec-Butylbenzene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
tert-Butylbenzene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
trans-1,2-Dichloroethene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
trans-1,3-Dichloropropene	<0.50	1	ug/L	5	08/15/2022 6:27 PM	006 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	99%	1	%REC		08/15/2022 6:27 PM	006 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	89%	1	%REC		08/15/2022 6:27 PM	006 VG9C1/2

Analytical Method:EPA 533	ļ	Prep Method:	EPA 533	<u>Prep Date:</u> 08/29/2022 11:56			
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
11CI-PF3OUdS	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
4:2 FTS	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
6:2 FTS	<3.5		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
8:2 FTS	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
9CI-PF3ONS	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
ADONA	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
HFPO-DA	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
NFDHA	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
PFBA	10.3		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
PFEESA	<1.8	L1	1	ng/L		09/05/2022 1:14 AM	006 BP351/2
PFHpS	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
PFMBA	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-05655

Lab No.: 70224339006

Sample Information:

Drinking Water

Type: Drinking Water
Origin: Raw Well
Routine

160 Drexel Ave.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Collected: 08/02/2022 10:30 AM Point N-05655 Received: 08/02/2022 01:41 PM Location Well 12

Collected By CLIENT

PFMPA	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
PFPeA	9.1		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
PFPeS	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Perfluorobutanesulfonic acid	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Perfluorodecanoic acid	2.7		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Perfluorododecanoic acid	<1.8		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Perfluoroheptanoic acid	7.3		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Perfluorohexanesulfonic acid	10.7		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Perfluorohexanoic acid	8.6		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Perfluorononanoic acid	7.9		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Perfluorooctanesulfonic acid	15.4*		1	ng/L	10	09/05/2022 1:14 AM	006 BP351/2
Perfluorooctanoic acid	15.3*		1	ng/L	10	09/05/2022 1:14 AM	006 BP351/2
Perfluoroundecanoic acid	2.3		1	ng/L		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C2-PFDoA (S)	32%	S0	1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C24:2FTS (S)	71%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C26:2FTS (S)	78%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C28:2FTS (S)	75%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C3-PFBS (S)	90%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C3-PFHxS (S)	77%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C3HFPO-DA(S)	54%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C4-PFBA (S)	59%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C4-PFHpA (S)	48%	S0	1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C5-PFHxA (S)	53%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C5-PFPeA (S)	60%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C6-PFDA (S)	28%	S0	1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C7-PFUdA (S)	28%	S0	1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C8-PFOA (S)	41%	S0	1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C8-PFOS (S)	79%		1	%REC		09/05/2022 1:14 AM	006 BP351/2
Surr: 13C9-PFNA (S)	35%	S0	1	%REC		09/05/2022 1:14 AM	006 BP351/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Kimberley Mack

Kimberley Mack

Test results meet the requirements of NELAC unless otherwise noted.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

WorkOrder:

70224339

Laboratory Certifications

Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174

Alaska DEC- CS/UST/LUST Alabama Certification #: 41320

Colorado Certification: FL NELAC Reciprocity

Connecticut Certification #: PH-0216

Delaware Certification: FL NELAC Reciprocity

Florida Certification #: E83079 Georgia Certification #: 955

Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity

Illinois Certification #: 200068

Indiana Certification: FL NELAC Reciprocity

Kansas Certification #: E-10383 Kentucky Certification #: 90050

Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007

Maine Certification #: FL01264 Maryland Certification: #346

Massachusetts Certification #: M-FL1264

Michigan Certification #: 9911

Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236 Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608

North Carolina Environmental Certificate #: 667

North Carolina Certification #: 12710 North Dakota Certification #: R-216

Ohio DEP 87780

Oklahoma Certification #: D9947
Pennsylvania Certification #: 68-00547
Puerto Rico Certification #: FL01264
South Carolina Certification: #96042001
Tennessee Certification #: TN02974
Texas Certification: FL NELAC Reciprocity

US Virgin Islands Certification: FL NELAC Reciprocity

Virginia Environmental Certification #: 460165

West Virginia Certification #: 9962C Wisconsin Certification #: 399079670

Wyoming (EPA Region 8): FL NELAC Reciprocity

Date Reported: 09/16/2022

page 39 of 44

WorkOrder:

70224339

Laboratory Certifications

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Date Reported: 09/16/2022 page 40 of 44

WorkOrder:

70224339

Additional Qualifiers

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- N3 Accreditation is not offered by the relevant laboratory accrediting body for this parameter.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

Date Reported: 09/16/2022 page 41 of 44

Client Info: Name or Code: Westbuy Water Past. Address:
Phone #:
Attn:
Proj. # or (Name):
Bill To:
Copies To:

Sample Request Form PUBLIC WATER SUPPLIER

Collected By: M. RIGNANO

Accepted By: Sandward 812

Cooler Temp: 0.7 °C 1341

WELL OFF LINE
□ WELL RUN TO SYSTEM
□ YES □ NO VOC'S PRESERVED WITH HCI

Sample Types

PW - Potable Water GW - Groundwater SW - Surface Water

WW - Waste Water AQ - Aqueous

S - Soil

All PFAS are Method 533

Purpose

RO - Routine RE - Resample

S - Special

Origin

D - Distribution
RW - Raw Well
TW - Treated Well

T - Tank

MW - Monitoring Well
I - Influent
E - Effluent

Treatment Types

AST - Air Stripper

GAC - Granular Activated Charcoal

N - Nitrate Removal Plant FE - Iron Removal Plant

O - Other

Date/Time Collected:	Sample Type	Location	Origin	Treatment Type	Purpose	Field Readings Cl ₂ pH/Temp	Analysis	Lab No.
8-2-2022	GW	Well-Le	RW		20		1.4 Dioxane PFOA/PFOS POC/MIC 533	
8/2/22 70	GW	Well-74 N-07788	RW		20			
Flat 820 M	GW	N-02682	RW		150			
CURT		W-05007	Ra		20			
Mala 1105	Gw	N- 5654	200		150			
8/2/22.10/m	GW	WE 5655	2w		20			
8/2/20-950 150	GW	M= 57253	200		RO			
8/2/22/20	GW	-15	PW		20			
2/2/22 830	GW	8497	1200		20			
8/2/22 920	GW	10451	1200		20			
82320	GW	24-18	RW		120			
Remarks:	ell-	12 Ran To Wa	ste					

575 Broad Hollow Rd., Melville, NY 11747 (631) 694-3040 Fax: (631) 420-8436

Client Info: Name or Code:
Address:
Phone #:
Attn:
Proj. # or (Name):
Bill To:
Copies To:

Sample Request Form PUBLIC WATER SUPPLIER

Date: 8-2	-2022	☐ WELL O	FF LINE
Collected By: M. R.	1'GNANO	□ WELL R	UN TO SYSTEM
Cooler Temp:	7 °C 1341	812 OYES OF	NO VOC'S PRESERVED WITH HCI
ample Types W - Potable Water W - Groundwater N - Surface Water W - Waste Water Q - Aqueous - Soil	Purpose RO - Routine RE - Resample S - Special	Origin D - Distribution RW - Raw Well TW - Treated Well T - Tank MW - Monitoring Well I - Influent E - Effluent	Treatment Types AST - Air Stripper GAC - Granular Activated Charcoal N - Nitrate Removal Plant FE - Iron Removal Plant O - Other

Date/Time Collected: /	Sample Type	Location	Origin	Treatment Type	Purpose	Field R Cl ₂	eadings pH/Temp	Analysis	Lab No.
8-2-4000	PW	wells 6 70 Blonded	E		120	.89	634.	1.4 DIOXANE/PROAIPROS POC/MIC 533	
Balan	PW	Wells 9/16 Blanded	E		20	.15	7.02.	1.4 Dioxane	21 2
8/2/22 1005	A	Wells 18 M Blooded	2		20	, 54	820	1.4 Dioxane/PROAIPROS POC/MIC 533 1.4 Dioxane	
							4.00		
-									
Remarks:	Ass	PFAS are					L		
	88.88	Trab are h	1-eth	od	53	5	_		

	S	ample	Condit	ion Upor	n Rec	WO#:7	02243	339
Pace Analytical *	Client	lame:			Projec	PM: JSA CLIENT: WWD		e: 08/12/22
Courier: Fed Ex UPS USPS Client Tracking #:		. / . /	Pace 🗍tl	her		CLILIT. WIII		
Custody Seal on Cooler/Box Present:Ye	s X No	Seals	intact: 🔲 Y	'es□ No 🗹	N/A	Temperature	Blank Present:	□Yes 🗘 No
Packing Material: Bubble Wrap 🔊 Bubble	Bags [Ziploc 🐧	∑ None □0	Ither		Type of Ice:		
Thermometer Used: THOST 14148	Correct	ion Facti): + O.	[Samples on ic	e, cooling proces	s has begun
Cooler Temperature(°C): . 7			ture Correc		.8	Date/Time 50	35A kits placed	in freezer
Temp should be above freezing to 6.0°C USDA Regulated Soil [MIN/A, water sample	}		•,	Date and	Initials of	e person examining	contents: KL	18/2/2
Did samples originate in a quarantine zone w	thin the U	nited Sta	tes: AL, AR, C	A, FL, GA, ID, L	A, MS, NC,	Did samples o	rignate from a fo	reign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		s \square No						o)? ☐ Yes⊠ No
If Yes to either question, fill out a Regulate		ecklist (-L1-C-010)	and include	with SCUR,			
						СОММЕ	NTS:	
Chain of Custody Present:	⊠Yes	□No	50	Ĺ				
Chain of Custody Filled Out:	Yes	□No		2				
Chain of Custody Relinquished:	⊠ Yes	□No		3.				
Sampler Name & Signature on COC:	√ZYes	□No	□N/A	4.				
Samples Arrived within Hold Time:	ZYes	□No	010	5.				31
Short Hold Time Analysis (<72hr):	Z Yes	□No		6. See	below			
Rush Turn Around Time Requested:	□Yes	ØNo		7.				
Sufficient Volume: (Triple volume provided for	-	□No		8.				
Correct Containers Used:	⊠Yes	□No		9.		a A	V.	4
-Pace Containers Used:	Z Yes	□No		-				
Containers Intact:	Yes	□No	/	10.		- 2 F		
Filtered volume received for Dissolved tests	□Yes	□No	ØN/A	11.	Note if sec	fiment is visible in	the dissolved cor	ntainer,
Sample Labels match COC:	∠Yes	⊡No		12.				
-Includes date/time/ID, Matrix: SI/W) (- L	£11/1	17	- IIII0	= 11.00		101
All containers needing preservation have beer checked?	i Lives	□No	ΦN/A	13.	□ HNO ₃	□H ₂ SO ₄ □	HOeN □	HCI
pH paper Lot #			1				[#]	
All containers needing preservation are found	to be			Sample #		383		
in compliance with method recommendation?			-					4
(HNO3, H2SO4, HCl, NaOH>9 Sulfide,	□Yes	□No	DN/A					
NAOH>12 Cyanide)								3
Exceptions: VOA, Coliform, TOC/DOC, Oil and Gr	ease,						1	
DRO/8015 (water).			**	Initial when	completed	: Lot # of added	Date/T	ime preservative
Per Method, VOA pH is checked after analysis			-			preservative:	added:	
Samples checked for dechlorination:	□Yes	□No	ZN/A	14.				
KI starch test strips Lot #	20							
Residual chlorine strips Lot #					ositive for R	tes. Chlorine? Y N		
SM 4500 CN samples checked for sulfide?	□Yes	□No	ØN/A	15.				
Lead Acetate Strips Lot #					ositive for S	ulfide? Y N		
Headspace in VOA Vials (>6mm):	□Yes	No	□N/A	16.				
Trip Blank Present Trip Blank Custody Seals Present	□Yes	(ZNO	□N/A	17_			19	
Pace Trip Blank Lot # (if applicable):	□Yes	□No	DM/V					
Client Notification/ Resolution:		-		Field Date D	on vise d?			
Person Contacted:	IGNAM	10		Field Data R		8/1/22	N	
Comments/ Resolution:		in Nes F	a Well		Date/Time: 11 , Well	19162	1 L 10 - L-	
DAGE	00 4		140.11	7 1001	1 2011	ic, wall	4 West	
		100						

PM (Project Manager) review is documented electronically in LIMS.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-00101

Lab No.: 70228124001

Type: Drinking Water
Origin: Raw Well
Routine

Sample Information:

575 Broad Hollow Road, Melville, NY 11747

TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

09/06/2022 11:30 AM

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

160 Drexel Ave.

Collected:

Received:

2902856 09/06/2022 07:30 AM Point N-00101

Location Well 6

Collected By CLIENT

Analytical Method: EPA 522	Prep Method: EPA 522				Prep Date: 09/17/2022 9:10 AM		
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
I,4-Dioxane (p-Dioxane)	0.81		1	ug/L	1	09/19/2022 7:32 PM	001 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	111%		1	%REC		09/19/2022 7:32 PM	001 AG2R1/2
Analytical Method:EPA 524.2							
Parameter(s)	Results	Qualifier	D.F.	<u>Units</u>	<u>Limit</u>	<u>Analyzed:</u>	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,1,1-Trichloroethane	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,1,2,2-Tetrachloroethane	< 0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,1,2-Trichloroethane	< 0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,1,2-Trichlorotrifluoroethane	<0.50	N3	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,1-Dichloroethane	1.7		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,1-Dichloroethene	0.70		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,1-Dichloropropene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,2,3-Trichlorobenzene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,2,3-Trichloropropane	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,2,4-Trichlorobenzene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,2,4-Trimethylbenzene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,2-Dichlorobenzene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,2-Dichloroethane	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,2-Dichloropropane	< 0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,3,5-Trimethylbenzene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,3-Dichlorobenzene	< 0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,3-Dichloropropane	< 0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
I,4-Dichlorobenzene	< 0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
,2-Dichloropropane	< 0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
2-Chlorotoluene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
I-Chlorotoluene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Benzene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Bromobenzene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Bromochloromethane	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Bromodichloromethane	<0.50		1	ug/L	-	09/14/2022 10:45	001 VG9C1/2
Bromoform	<0.50	v3	1	ug/L		09/14/2022 10:45	001 VG9C1/2
Bromomethane	<0.50	L1	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Chlorodifluoromethane	<0.50	N3	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Chloroethane	<0.50	. 10	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Chloroform	<0.50		1	ug/L	ŭ	09/14/2022 10:45	001 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	09/14/2022 10:45	001 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Result(s) reported meet(s) NYS Regulatory Limit(s).
Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Gunfa Com

Jennifer Aracri

Test results meet the requirements of NELAC unless otherwise noted.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-00101

Lab No.: 70228124001

Type: Drinking Water Origin: Raw Well Routine

Sample Information:

Pace°
575 Broad Hollow Road, Melville, NY 11747

TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

160 Drexel Ave.

Collected:

Received:

09/06/2022 07:30 AM Point N-00101 09/06/2022 11:30 AM Location Well 6

Collected By CLIENT

Dibromochloromethane	< 0.50	1	ug/L		09/14/2022 10:45	001 VG9C1/2
Dibromomethane	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Dichlorodifluoromethane	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Ethylbenzene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Hexachloro-1,3-butadiene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Isopropylbenzene (Cumene)	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Methyl-tert-butyl ether	< 0.50	1	ug/L	10	09/14/2022 10:45	001 VG9C1/2
Methylene Chloride	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Styrene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Tetrachloroethene	0.78	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Toluene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Total Trihalomethanes (Calc.)	< 0.50	1	ug/L	80	09/14/2022 10:45	001 VG9C1/2
Trichloroethene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Trichlorofluoromethane	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Vinyl chloride	< 0.50	1	ug/L	2	09/14/2022 10:45	001 VG9C1/2
cis-1,2-Dichloroethene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
cis-1,3-Dichloropropene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
m&p-Xylene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
n-Butylbenzene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
n-Propylbenzene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
o-Xylene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
p-Isopropyltoluene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
sec-Butylbenzene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
tert-Butylbenzene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
trans-1,2-Dichloroethene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
trans-1,3-Dichloropropene	< 0.50	1	ug/L	5	09/14/2022 10:45	001 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	95%	1	%REC		09/14/2022 10:45	001 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	89%	1	%REC		09/14/2022 10:45	001 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Jennifer Aracri

Test results meet the requirements of NELAC unless otherwise noted.

Pace

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-07785

Lab No.: 70228124002

Type: Drinking Water
Origin: Raw Well
Routine

Sample Information:

575 Broad Hollow Road, Melville, NY 11747
TEL: (631) 694-3040 FAX: (631) 420-8436

www.pacelabs.com

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Collected: 09/06/2022 07:45 AM Point N-07785
Received: 09/06/2022 11:30 AM Location Well 7A

Collected By CLIENT

Applytical Method: FDA FOO		Drop Mothod:	EDA 500		Bron Doto:	00/47/0000 0:40 AM	
Analytical Method:EPA 522		Prep Method:	EPA 522		Flep Date.	. 09/17/2022 9:10 AM	
Parameter(s)	<u>Results</u>	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.98		1	ug/L	(1)	09/19/2022 7:48 PM	002 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	105%		1	%REC		09/19/2022 7:48 PM	002 AG2R1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

Test results meet the requirements of NELAC

unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

Date Reported: 09/20/2022 page 3 of 13

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests Type: Drinking Water Origin: Raw Well Routine

Sample Information:

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436

www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram

160 Drexel Ave.

Lab No.: 70228124003 Client Sample ID.: N-05007

Federal ID: 2902856

Collected: 09/06/2022 09:45 AM Point N-05007 Received: 09/06/2022 11:30 AM Location Well 10

Collected By CLIENT

Analytical Method:EPA 522		Prep Method:	EPA 522		Prep Date	<u>s:</u> 09/17/2022 9:10 AM	
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	0.65		1	ug/L	1	09/19/2022 8:03 PM	003 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	104%		1	%REC		09/19/2022 8:03 PM	003 AG2R1/2
Analytical Method:EPA 524.2							
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,1,1-Trichloroethane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,1,2,2-Tetrachloroethane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,1,2-Trichloroethane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,1,2-Trichlorotrifluoroethane	< 0.50	N3	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,1-Dichloroethane	1.3		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,1-Dichloroethene	1.8		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,1-Dichloropropene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,2,3-Trichlorobenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,2,3-Trichloropropane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,2,4-Trichlorobenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,2,4-Trimethylbenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,2-Dichlorobenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,2-Dichloroethane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,2-Dichloropropane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,3,5-Trimethylbenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,3-Dichlorobenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,3-Dichloropropane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
1,4-Dichlorobenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
2,2-Dichloropropane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
2-Chlorotoluene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
4-Chlorotoluene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Benzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Bromobenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Bromochloromethane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Bromodichloromethane	< 0.50		1	ug/L		09/14/2022 11:12	003 VG9C1/2
Bromoform	< 0.50	v3	1	ug/L		09/14/2022 11:12	003 VG9C1/2
Bromomethane	<0.50	L1	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Chlorobenzene	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Chlorodifluoromethane	< 0.50	N3	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Chloroethane	< 0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Chloroform	<0.50		1	ug/L		09/14/2022 11:12	003 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	09/14/2022 11:12	003 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Result(s) reported meet(s) NYS Regulatory Limit(s). Result(s) flagged with * Exceed NYS Regulatory Limit(s). Limit Noted.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Client Sample ID.: N-05007

Lab No.: 70228124003

Type: Drinking Water
Origin: Raw Well
Routine

Sample Information:

160 Drexel Ave.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856

Collected: 09/06/2022 09:45 AM Point N-05007 Received: 09/06/2022 11:30 AM Location Well 10

Collected By CLIENT

Dibromochloromethane	<0.50	1	ug/L		09/14/2022 11:12	003 VG9C1/2
Dibromomethane	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Dichlorodifluoromethane	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Ethylbenzene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Hexachloro-1,3-butadiene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Isopropylbenzene (Cumene)	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Methyl-tert-butyl ether	<0.50	1	ug/L	10	09/14/2022 11:12	003 VG9C1/2
Methylene Chloride	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Styrene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Tetrachloroethene	3.8	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Toluene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50	1	ug/L	80	09/14/2022 11:12	003 VG9C1/2
Trichloroethene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Trichlorofluoromethane	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Vinyl chloride	<0.50	1	ug/L	2	09/14/2022 11:12	003 VG9C1/2
cis-1,2-Dichloroethene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
cis-1,3-Dichloropropene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
m&p-Xylene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
n-Butylbenzene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
n-Propylbenzene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
o-Xylene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
p-Isopropyltoluene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
sec-Butylbenzene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
tert-Butylbenzene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
trans-1,2-Dichloroethene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
trans-1,3-Dichloropropene	<0.50	1	ug/L	5	09/14/2022 11:12	003 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	95%	1	%REC		09/14/2022 11:12	003 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	89%	1	%REC		09/14/2022 11:12	003 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Jennifer Aracri

Test results meet the requirements of NELAC unless otherwise noted.

Results for the samples and analytes requested The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests **Sample Information:**

Type: Drinking Water Origin: Raw Well Routine

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

160 Drexel Ave. Westbury, NY 11590 Attn To: Supt. Ingram

Lab No.: 70228124004 Client Sample ID.: N-07353

Federal ID: 2902856

Collected: 09/06/2022 10:00 AM Point N-07353 Received: 09/06/2022 11:30 AM Location Well 14

Collected By CLIENT

Analytical Method: EPA 522		Prep Method:	EPA 522		Prep Dat	e: 09/17/2022 9:10 AM	
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,4-Dioxane (p-Dioxane)	1.7*		1	ug/L	1	09/19/2022 8:19 PM	004 AG2R1/2
Surr: 1,4-Dioxane-d8 (S)	102%		1	%REC		09/19/2022 8:19 PM	004 AG2R1/2
Analytical Method:EPA 524.2							
Parameter(s)	<u>Results</u>	Qualifier	D.F.	<u>Units</u>	<u>Limit</u>	Analyzed:	Container:
1,1,1,2-Tetrachloroethane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,1,1-Trichloroethane	0.70		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,1,2,2-Tetrachloroethane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,1,2-Trichloroethane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,1,2-Trichlorotrifluoroethane	<0.50	N3	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,1-Dichloroethane	4.0		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,1-Dichloroethene	1.5		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,1-Dichloropropene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,2,3-Trichlorobenzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,2,3-Trichloropropane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,2,4-Trichlorobenzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,2,4-Trimethylbenzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,2-Dichlorobenzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,2-Dichloroethane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,2-Dichloropropane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,3,5-Trimethylbenzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,3-Dichlorobenzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,3-Dichloropropane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
1,4-Dichlorobenzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
2,2-Dichloropropane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
2-Chlorotoluene	< 0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
4-Chlorotoluene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Benzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Bromobenzene	< 0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Bromochloromethane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Bromodichloromethane	<0.50		1	ug/L		09/14/2022 11:38	004 VG9C1/2
Bromoform	<0.50	v3	1	ug/L		09/14/2022 11:38	004 VG9C1/2
Bromomethane	<0.50	L1	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Carbon tetrachloride	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Chlorobenzene	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Chlorodifluoromethane	<0.50	N3	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Chloroethane	<0.50	-	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Chloroform	<0.50		1	ug/L	-	09/14/2022 11:38	004 VG9C1/2
Chloromethane	<0.50		1	ug/L	5	09/14/2022 11:38	004 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Test results meet the requirements of NELAC

unless otherwise noted.

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests

Type: Drinking Water
Origin: Raw Well
Routine

Sample Information:

Pace

160 Drexel Ave.

575 Broad Hollow Road, Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 www.pacelabs.com

Westbury Water & Fire Dist.

Westbury, NY 11590 Attn To: Supt. Ingram Federal ID: 2902856 Client Sample ID.: N-07353

Lab No.: 70228124004

Collected: 09/06/2022 10:00 AM Point N-07353 Received: 09/06/2022 11:30 AM Location Well 14

Collected By CLIENT

Dibromochloromethane	<0.50	1	ug/L		09/14/2022 11:38	004 VG9C1/2
Dibromomethane	< 0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Dichlorodifluoromethane	< 0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Ethylbenzene	< 0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Hexachloro-1,3-butadiene	< 0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Isopropylbenzene (Cumene)	< 0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Methyl-tert-butyl ether	< 0.50	1	ug/L	10	09/14/2022 11:38	004 VG9C1/2
Methylene Chloride	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Styrene	< 0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Tetrachloroethene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Toluene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Total Trihalomethanes (Calc.)	<0.50	1	ug/L	80	09/14/2022 11:38	004 VG9C1/2
Trichloroethene	1.2	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Trichlorofluoromethane	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Vinyl chloride	<0.50	1	ug/L	2	09/14/2022 11:38	004 VG9C1/2
cis-1,2-Dichloroethene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
cis-1,3-Dichloropropene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
m&p-Xylene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
n-Butylbenzene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
n-Propylbenzene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
o-Xylene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
p-Isopropyltoluene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
sec-Butylbenzene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
tert-Butylbenzene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
trans-1,2-Dichloroethene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
trans-1,3-Dichloropropene	<0.50	1	ug/L	5	09/14/2022 11:38	004 VG9C1/2
Surr: 1,2-Dichlorobenzene-d4 (S)	93%	1	%REC		09/14/2022 11:38	004 VG9C1/2
Surr: 4-Bromofluorobenzene (S)	88%	1	%REC		09/14/2022 11:38	004 VG9C1/2

Qualifiers:

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Estimated value - below calibration range

U - Indicates the compound was analyzed for, but not detected

See qualifiers page for additional qualifier definitions.

Jennifer Aracri

Test results meet the requirements of NELAC unless otherwise noted.

WorkOrder:

70228124

Laboratory Certifications

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Date Reported: 09/20/2022 page 9 of 13

WorkOrder:

70228124

Additional Qualifiers

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- N3 Accreditation is not offered by the relevant laboratory accrediting body for this parameter.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

Date Reported: 09/20/2022 page 10 of 13

Client Info: Name or Code: Westbury Water Dist. Address:
Phone #:
Attn:
Proj. # or (Name):
Bill To:
Copies To:

Sample Request Form PUBLIC WATER SUPPLIER

Date: 9/9/2022
Collected By: M. Brignano
Accepted By: \$70 P-LI, 9/6/22, 11:30 P
Cooler Tomps 1:4 °C (v.)

☐ WELL OFF LINE	
☐ WELL RUN TO SYSTEM	

☐ YES ☐ NO VOC'S PRESERVED WITH	HCI
---------------------------------	-----

Sam	ple	Typ	oes

747

PW - Potable Water GW - Groundwater

SW - Surface Water

WW - Waste Water

AQ - Aqueous S - Soil

Purpose

RO - Routine RE - Resample

S - Special

Origin D - Distribution

RW - Raw Well

TW - Treated Well

T - Tank

MW - Monitoring Well
I - Influent
E - Effluent

Treatment Types

AST - Air Stripper

GAC - Granular Activated Charcoal

N - Nitrate Removal Plant

FE - Iron Removal Plant

O - Other

Sample Info:

Date/Time Collected:	Sample Type	Location	Origin	Treatment Type	Purpose	Field Re	eadings pH/Temp	Analysis	Lab No.
9-6-2025	HU	420020 7-11 Powells hame	\mathcal{C}		RO	,87	755	MICI	
9020	PW	Brush Hollow Pd.	D		(SSI	.97	7.53		
9/1/22/	100	420090 W.W. 12.160	elair.		150	,58	7.11		
alpha low	rw	420000 WIF.D. HOL M 305 Maple Ave.	\mathcal{D}		RO	,56.	7,27		
9/6/22 105	Pw	420120 Mc Donalds	D		20	.54	7.60		
		/							
9/1/2017	GW	Well-6 100101	RW		120		8	1.4 Dioxana Poc	-00/
1/4/2014	(GW	Well- 72 N-07785	RW		RO			1.4 Dioxane Pol -	-002
((A)	6w	W-C11-10 N-65007	RW		RO			1. 4 Dioxane Poc -	1723
1111/10/1	GW	WEII-14 N-07353	RW		RO			1.4 Dioxure / Poc -	1504
16/2 500	6w	WE11-16 N-08497	RW		20			1.8 Dioxune -0	05

Remarks: Week (T)

	ÇOC	PAGE .	ol															×				1.5		5	Samp	le C	onte	Iner	Col	unt									LA	U	<u>/:</u>	•	1	V			4	5.			ł.			
		Cite Wax I	ı;	U) [1)			. /	1				_	Pro	ofile #		4	5	0	6	9					_						iber Sp						JSI NT		MC)		Du	e	Da	te:	0	9/	15	/2	
		Wax 6):	1,	4	1)ii)XC	CH	e/	1	0	٢			7100		Notes	_										-			Add S	CLOC	3FO (0	firsi sa	mpie i	01 7 141	•	_				_	_			_					ľ	1	
oc 1	/Gsn	VG9C	1	JG9T)G9Y	OG9P	V690	DG6T	DG9S	AG4U	AG3U	AG2U	NG1U	AG34	AG3S	AG4E	AG3T	AGZR	AG1T	АС1H	AG1A	CG1U	BP4U	вьзо	BP2U	BP1U	BP3S	SPZS	SP4N	NEGA	BP2N	ВРЗС	врзт	8P35	врзк	2148	NI AG	9149	1000	×	DZSW	Mero.	WGKU	wgon	ZPLC	GN	d.	200	Soc					
iein 3	-	21	13	ă	ă	ŏ	ŏ	ă	ă	, A	Š.	×	3	3	4	4	4	2	4	<	<	0	.00.	-		<u></u>	-		1											3														,
1		2	+	-	-			-			-	+	\vdash	1	\vdash		-	7			1							1																										
1			-	-	_	-		_	-	-	-	-	12	-			-	2			-			-	\dashv	1	7	+	1																									
3		2	_		_	_				-	-	-	-	-	-		-	2	-	-	-	-			-	+	+	+	+	+					\neg		1	1	1									iE						
		2	_							_	-	-	-	-			-	_	ļ.,	-	-	-			-	+	-	+	+	-			-	-		+	+	+			1	7				- 0								•
5		X											_			_	_	2	_	_	, A	_			_	-	-	+	+	-+	-	-			-	-	-	+	+	+	+	+	+	-		- C			-	\vdash		-	+	
																												_	_	_	_	_	_		_	-	-	+	-	+	-	+	-	-	-	-		-	-	-		-	+	
									П																											_	_	-	-	4	4	-		-			_	_	-	-		\vdash	+	
1			+			1														li.																													1	-			-	
ă.	-		+	+	-	-	1	-	-	1				1	\vdash		\vdash				1																																_	
9	-		-	-	-	-	-	-	-	+	+	+	+	╁	-	-	+	+	+		1	1	1										N)													13								
10			_		-	-	_		-	-	-	+	+	+	-	-	+	-	+	-	+	-			-	-	-		+				-																			Ī		
11									_	_	1	1	_	-	_	-	-	-	-	-	1		-				-	-	-	-						-	-	\dashv	-	-	+	7	-									T		۰
12													1	L				1		1_	1_	1	1					- 1	V		-			1			-1	1	_1			_				-	-	_	-		-	٠	-	٠
BALANTE C	odes							_		-	-		_		T		-	_			_	-	T	-	-		-	_													ſ	=!=			Мо	urix							9	
-						_	lass		-				_		-		1.0		lastic	servi	- 4 -1	1 -	SP	Ť	1200	MI:		n Na	Thio	-		BP1	IU	111.	IC Inpre		plas	lic			ŀ	WT		Wal	ler									
	/G9U	40mL	nuble	s clea	vial		AG		12	5mL i	nuori	es an	nber	glass glass	BP	4U 3U				servi			R		-	BCOLE		11.150	11119			BP3	N,	250	mL H	103 t	lasin	:			- 1	SL		Soli			Lini	.tar		-				
1	/G9C /G9H	40mL				at vii	AG	2U	50	0mL	unpr	es ar	nber	glass	BP	2U_	50	0mL	unpr	eserv	ed pl	aslic			202					- 1		BPI	_		mL S						1 134	NAL OL	_	OIL	1-aqu	6002	LIQU	ЛO		-				
	/G9S	40mL	Sullu	rc cle	ar via		_	10		ler un					_	10				yed p		-		KU			eserv					AG:	20_	500	mt u	ipres	HIIIO	er yra	33	_	- 1	WP		Wip	e					7				
	OG9T OG9Y	40mL						34 3S	25	omL 0mL	H2S	O4 a	mber	bottle glass	BF	3N	_	_	_	3 pla			_	DU			rese														l	DW		Orin	nking	Wat	er	-	_	J				
-	DG9P	40mL						4Ē	12	5mL	EDA	amb	er gl	ass	98	2N	_			3 pla		_	ZP	_		ock B		_	_		1	' Ca	n also	bea	BP4N					-								300						
	OG9A	Ascor				OmL	AG	3T 2R						r olas e Car			_	_		04 pl			TE BG	1H		Iar Ba	Clear	Glass	5											8														
-	DG6T DG9S	Na Tr		CI/Cu		40m	_			Thic						23C	_			L bot			- GN		Ger	neral														n														
	2G1U	1L Ur					AC	1Н		. HCI	_	er gla	3\$5			3T			Trizn		_ ^ _		W	_	Wip	8		-				DG	gT.	1400	nL Na	DC Thin	amb	er via		2														
}	wG90	1244		it in a		-	AC	1A	[(N	H4CI	1)		-		-	235 23R	_			SO4.												_	9A		nL As					2														
	WG40														B	12	11	NaC	DH, Ż	n Ace	elale											-	9Y		Thios					2														
[1	21N 21B			O3 pl	astic ate Ar		8 otil										DG	30	_	I Dios	_			_															
															DI	10	- IN	a 1111	03011	are VI	MUE	Dom	-			5						AG	зт	Na	Inios	ulfale	250	mL b	ollle															
																							: 1									BP	1B	_	Thios		_			2														
																																-	1A		H4CL)		15.7	,,1100		2	j				5									
Accions																																																						

Range Apply tight					WO#:70	228124	
Pace Analytical Courier: Fed Ex Dups Dusps Dalient	Client I	lame		n Pro	PM: JSA	Due Date: 09	9/15/22
	Wes	thurg	10.1)	CLIENT: WWD	Due Date. of	<i>y</i>
		scrial //	וועם אכפ	iei	CLIENI: MMD		
Tracking #:		Caplai	otact: O V	es No N/A	remneratur	e wank Present: L	11621-140
Custody Seal on Cooler/Box Present:	SS MO				Type of Ice:		
Packing Material: Bubble Wrap Bubble	s gags [JZIPIOC 2		i i		ice, cooling process ha	as begun
Thermometer Used: THB9+ T1-1148	Correct	ion Facto	ure Correc	tod(°C). /. C		5035A kits placed in I	
Cooler Temperature(°C): /-4	Cooler	remperat	ALE COLLEC	teat ci. 7.	bate/ time.	1033A KIES PIBECO III .	
Temp should be above freezing to 6.0°C USDA Regulated Soil [N/A water sample	e]			Date and Initial	ls of person examini	ng contents: SH	9/6/20
Did samples originate in a quarantine zone w		Inited Stat	es: AL. AR. C	A, FL, GA, ID, LA, MS,	NC. Did samples	orignate from a foreig	grisource
NM NY OK OD SC THE TY ON VA Schook man)?) Dye	S LIND			iucinging Hai	waii and Puerto Ricol?	Ves No
If Yes to either question, fill out a Regulat	ed Soil Ch	necklist (f	-LI-C-010) :	and include with S	SCUR/COC paperwork	(. <u> </u>	2
1. 100 to ertifici question, im out a negative					COMP	fENTS:	
Chain of Custody Present:	eyes	□No		L.			2)
Chain of Custody Filled Out:	Ves	No		2.			
Chain of Custody Relinquished:	ØYeş	□No		3.			
Sampler Name & Signature on COC:	eyes		□N/A	4.			
Samples Arrived within Hold Time:	eyes	□No		5.			
Short Hold Time Analysis (<72hr):	□Yes	□Mo		6.			
Rush Turn Around Time Requested:	□Yes	No		7.			3
Sufficient Volume: (Triple volume provided fo		□No		8.			
Correct Containers Used:	Ores	□No		9.	. (1)		ii .
-Pace Containers Used:	DYes				8 **		
Containers Intact:	Yes	□No		10.	. *		
Filtered volume received for Dissolved tests	□Yes	□No	ON/A	II. Note	if sediment is visible i	n the dissolved contain	iner.
Sample Labels match COC:	OYes	□No		12_			
-Includes date/time/ID, Matrix: SL/WT)		0				7/	
All containers needing preservation have bee		□No	en/a	13. OH	10 ₃ □ H ₂ SO ₄	□NaOH □HCI	•
checked?					5 6 2	33	
pH paper Lot #				1	•		
All containers needing preservation are found	d to be		G2.5	Sample #			15
in compliance with method recommendation				į.			
[HNO3, H2SO4, HCI, NaOH>9 Sulfide,	□Yes	□No	DN/A	1			8
NAOH>12 Cyanide]						ă.	848
Exceptions: VOA, Coliform, TOC/DOC, Oil and C	Grease,			Initial when com	pleted: Lot # of adde	d Date/Tim	e preservative
DRO/8015 (water).			2	lingal when com	preservative:	added:	e preserventi
Per Method, VOA pH is checked after analysis		- Chin	DN/A	14.	Thisselearing.	Jaudeu.	
Samples checked for dechlorination:	□Yes	ПNо	AVA	14.			12
KI starch test strips Lot #				Positive	e for Res. Chlorine? Y	N	27
Residual chlorine strips Lot #	CVoo	□No	ON/A	15.	e for Res. Officiale: 1		
SM 4500 CN samples checked for sulfide?	□Yes	LINO			e for Sulfide? Y	N	
Lead Acetate Strips Lot #	□Yes	□No	ON/A	16.		ž	
Headspace in VOA Vials (>6mm):	□Yes	□No	ON/A	17_			
Trip Blank Present Trip Blank Custody Seals Present	⊡Yes	□No	DN/A	1		7.	
Pace Trip Blank Lot # (if applicable):	[]162	١١٥٥					111
Client Notification/ Resolution:	*	*		Field Data Requir	red? Y	/ N	
Person Contacted:		3		Date,	/Time:		
Comments/ Resolution:	(0.10)						
	10		š.				
			(a)				

PM [Project Manager] review is documented electronically in LIMS.